proc. Int. Symp. on Circ. and Systems (ISCAS)
June 1988, pp. 623-626, Espoo, Finland. (reformatted)

Latency exploitation in circuit simulation
by sparse matrix techniques

J.T.J. van Eijndhoven, M.T. van Stiphout

Eindhoven University of Technology
Dept. of Electrical Engineering
PO box 513, 5600MB Eindh@en, TheNetherlands

Abstract

The most important operations br a circuit simula-
tor are component model linearisation, updating the
network matrix, performing an L/U decomposition
on this matrix, and solving the netveork variables by
forward and backward substitution. Methods are
presented to keep ALL these operations localized to
the part of the network that is active & the current
timepoint, thus obtaining a considerable eduction
in computational effort. The methods depend upon
the sparse matrix structure itself, yielding a very
effective ‘fine grained’ latency exploitation, contrary
to methods based on the laye blocks specified by the
circuit hierarchy. Results ae presented, obtained
from an implementation of the algorithms in a piece-
wise linear circuit simulator with an implicit multi-
rate integration scheme.

Intr oduction

Traditional circuit simulation programs are kmoto be
extremely computationally x@ensve. This is mainly
due to the basic scheme where at each timepointa Ne
ton-Raphson iteration is needed, which arg cycle
performs a full L/U decomposition and foawd back-
ward substitution.

Several attempts were made to use the (designer speci-
fied) circuit hierarch to Kip the evauation of inactie
parts of the circuit [2] [3] [8] [9]. These approaches
spend somewerhead on keping data inggity on the
module boundaries ub can be déctive for 'good’
designs. Hwever designers tend to maeklittle use of
hierarcly, creating lage modules inditient for lateng
exploitation.

As alternatie, waveiorm relaxation is gining popular

ity [6]. Here a partitioning in relatgly small modules
which are analyzed separateflgrms an ideal basis for
lateny exploitation. Havever the cost of the required
repeated analysis and the often used limitation to MOS
circuits are serious dndbacks.

The method presented in thexheections is able to
limit the computations to the ae#i sibnetworks only
by carefully optimizing sparse matrix techniques. Thus

skipping operations comes on a 'per matrix element’ or
‘per vector element’ basis, leading to afi@ént simu-
lation scheme, independent of the (hierarchical) struc-
turing done by the circuit designefhe method mads
use of a rank one éetor product) update strgie on

the netvork matrix, which can be used in awWen-
Raphson based simulatoHoweve we implemented
the method in a pieegse linear circuit simulator
where this rank one update comes easily ampdicitly
awailable. Furthermorean implicit multirate intgra-
tion scheme is used (assigningfeliént intgration
stepsizes to the inddual components), leading to an
event driven analysis, ideally matching the latgnc
exploitation.

System werview

A DC wlution is assumed to be found before the tran-
sient analysis startsThe netvork variables (wltages,
currents) are denoted by During the transient analy-
sis we will alvays sole for X, the time dewative d X,

and use the appropriate jacobians and souewtors
(J, b) of the components.

For the transient analysis a multirate gitation scheme
is used. If at timet a mponenk is assigned its indi-
vidually optimized timestep,, this hy is used to gen-
erate the jacobiarfJy, by). This componenk now
posts an eent at time pointmin(t + h, t + Aty),
where Aty is the time distance wards the nearest
boundary of the piegdse linear component model.
(With given X and X this boundary is easilyxglicitly
determined.) Ifother @ents (from other components)
occure before thig¢ + h,, which afect componenk
due to modifications ix, this componenk is checled
for the \alidity of its event. If necessarythis event is
rescheduled. Ithe eent is finally serviced, the jaco-
bian is alleved to change a&in. Crossinga boundary
of the model corresponds to a rank one update, assign-
ing a nev different time stef corresponds to a rarnk
update, withp the dynamic order of the component
(usually one, tw or three).

With this scheme, components which are in a k&ati
quiescent state, are automatically assignegeldime
stepsh, and hence generateweevents. Nodesn the



network (variables) which are incident to these quiet
components onlywill show amost no wariation inX,

and are probably not fatted by otherdst changing
components. The purpose of this paper is to present
methods to xploit this lateng behaviour, based upon

the sparse matrix structure instead of being based upon
a wser defined hierargh

A new /U decomposition of the netwk matrix is nev

to be determined withvery modified jacobian, and a
new vectorX is to be soled. For both of these opera-
tions, algorithms will be presented that process only the
smallest possible part of the L/U decomposition and the
involved \ectors.

These algorithms defkr a vector/AX, a parse update to
the vectorx. Now for all nonzero elements (indices) of
X the \ectorsx andx are updated to the current time-
point, and a ng event is scheduled for the components
which are incident to these modified elements.

The datastructure for the sparse matrix storageliis b
with linked C structures. Each nonzero element of the
L/U decomposition occupies one structure containing
the element alue, its rav and column indices, and tw
pointers to the né element in the samewoand the
next element in the same columithree arrays are in
use with pointers to the first element in each, rine
first element in each column, and to each diagonal ele
ment (the piots).

The sparseactors are also stored with a C structure for
each nonzero element. Besides the elemaktey this
structure contains the element irded a pointer to the
next structure. The linked datastructures for both the
sparse gctors and the sparse matrix are ordered:
traversing the list gies the elements in ascending
index.

The rank one update

The first operation is to obtain thear@and column ec-

tors that define the rank one update to the jacobians(s).
For Newton-Raphson based simulators this has to be
done inside wery Newton iteration, with a scheme as
for instance described in [7], section 718.our imple-
mentation of anwent driven piecewise linear simulator

the crossing of the edge of the model of a component,

explicitly gives the required n@ and column ectors,
and no iteration is needed, see [4] or [5].

Assume(A, b) represents the matrix of netvk equa-
tions, with the sourceector b, and a solutionx of
AX + b =0 is knavn. Furthermorethe rav and col-
umn ector ( andc) and scalap, are knavn, defining
the rank one update (&, b) for which the L/U decom-
position has been determined.

So (A',b') = (A,b) + c r',p), and X' has to be
solved fromA'X' = b'.

LetX' = X + AX, then substitution leads to:

A+cOYAx+cOp+rX) =0

In the event driven dmulation scheme, the updatect
tors c andr, correspond to the update of the jacobians
of one or a f& components, and henceveamly a \ery
small number of nonzero entrie3herefor the abee
source ectorc [{p + r' [X) will have & few ronzero
entries, and can be determined with a corresponding
efficiengy.

In the nat two sections, algorithms are presented to
determine the L/U decomposition 6A + ¢ [I'), and
produce the solutioAx by a forward backvard substi-
tution process, where the amount ajrivis controlled

by the number of nonzero updates, and not by the
matrix sizen.

The L/U decomposition update

The most important step is of course the determination
of the nev L/U decomposition after thewoand column
update ectors of the jacobian(s) are fount.is well
known that a ne& L/U decomposition can befifiently
found by an update strapgin 2n? operations (for a full
matrix of sizen), contrary to then® operations required
for an entirely n& L/U decomposition. The original
algorithm as désed by J.M. Bennett [1] is gn
below.

Assume a decomposition Afis knowvn according to:
A=LIDMIJ
with:
Li=U; =1, 1<isn
Lij:Dij:Dji:Uji:O1 l<i<j<n
Bennetts algorithm &€iently determined.’, D' andU’
such that:

L' U =A=A+c

The algorithm, simplified for a rank one update pnly
can be gien as:



d=1
fori=1tondo

begin D; =D; +r; M [k
p=c /Dy, q=r0/D;, dzd-pﬁiﬁ
forj=i+1tondo
begin G =¢Cj- L“ L
Lji = Lji RlY s}
rj = I’j - U” Di
Uj=Uj+r b
end
end
algorithm 1

The Sparse Matrix Implementation

This update stratgy is well suited for a sparse matrix
implementation, as &s pointed out already in [5].

Our contrilution is an dfcient sparse implementation
of the L/U update and foravd backvard substitution,
which is able to skip manpivots, resulting in a ery
low average computational complgy. This skipping

of pivots basically corresponds to skipping part of the
circuit, giving the desired lategcexploitation. If for
instance in the alve dgorithm ¢;j =r; =0 for ary i,
then the body of the outer ftwop can be entirely
skipped.

The \ectorsc andr are &pected to hee aly a \ery
few nonzero entries.These are stored in sparse form,
and the folloops are modified, generating directly use-
ful indicesi without trying all \alues fori one by one.

The algorithm is gien below, in C g/ntax.

void ludec_upd(r, c)

{ /Or and c are the rank one update vectors [
d=1.0;
while (r || ¢) /Onot both vectors empty yet [J

{ /Oget first nonzero elements in either row or col

i = get_first_elmnts( &r, &c, &r_i, &c_i);

D[i]->value += r_i Od Oc_ij;
p = c_i Od/ D[i]->value;
g =r_i O0d / D[i]->value;
d -= p OD[i]->value Oq;

/OUpdate row vector and U-row [1
mutual_update( r, D[i], right, -c_i, q );

/OUpdate col vector and L-column [
mutual_update( ¢, DJi], down, -r_i, p);

algorithm 2

In the abee gogram,get_first_elmnts() determines
from the first elements in each sparsetar (if not yet

empty) the smallest indei of a nonzero element.oF

this inde, the elementaluesr_i andc_i are returned,
which are made zero if the indevas absent in the
respectie vector. If a nonzero element of aegtor is

returned, the ector pointer is set to the xteelement,

ultimately resulting in an emptyeetor terminating the
enclosingwhile loop.

In practice it is found that the al® routine produces
on average only a f& indicesi to recompute, resulting
in a computational comptéy much laver thann, the

size of the netark matrix.

The abee dgorithm is of course only a basic stripped
sion: the real program code has to check for the
tetrlcal condition of the (mg pivot, and tak gpro-
priate measures if necessary

The mutual_update() routine performs a simultane-
ous scan er a arse ector ( or ¢) and a matrix ro

or column U or L). Duringthis scan it generates the
required indices j, in the same way as
get first_elements(), performing the updates, due to
the inner fofloop of algorithm 1, in a time compligy
proportional to the number of nonzero elements
encountered. Omveaage these are am only a fev
elements, almost independent of the matrix (circuit)
size.

The forward backward substitution

The algorithm of the prxgous section generates the L/U
decomposition ofA + ¢ [1'), and nav we anly need a
suitable forvard backvard substitution to soévfor AX.
Again  we a@pect for the source ector
s=c Op + r' [xdot) only a \ery small number of
nonzero elements, requiring an algorithm which daesn’
check all indices one by ond3elow the algorithm is
given of the forward substitution process.

SPARSE_VEC forward_subs( s)
{ /Osolvey from Ly+s=0, s is sparse source vector [1
for (y=NULL; s; s = s->next)
j = s->inx;
vec_fillin( &y, j); /Ocreate new y in reverse order [0
y->value = - s->value; /ONote Ljj==101
/Oupdate s[i] by adding Lij Oy[j] fori>j
mutual_update( s->next, D[j]->next[down],
down, y->value, 0.0);
} return(y);

algorithm 3

In the abwee dgorithm, the use ofnutual_update()
is somevhat overkill (with the given parameters, the
matrix column isrt updated), bt is suitable as a com-
pact specification of the algorithnOf coursey might
have mary more nonzero elements than depending
upon the connedtity and behgiour of the circuit.

The backward substitution process (solviryx from
U CAX =y) is comparable and not listed yarmore.
For the backward substitution the matrix elementsldf
are also scanned column wise, and Yhis needed in
reverse order (highest indices first), as generatedeabo

The vector update

The forward backvard substitution process yields a
sparse gctor AX, for the update ok at a certain inte-
gration timepointt. Some elements ok need to be
updated nw, and a set of components is to be created
which are 'actie’ and have 10 be checled for their ney
event.

For a proper sparse update xf a vectorlast_update
is kept, containing the timepoint of the last updat&.to
The updating algorithm is moeasily stated as:



COMPONENT_SET update_x( t, Dxdot)
{ clear_set( &active_components);
for (; Dxdot; Dxdot = Dxdot->next)
{ k = Dxdot->inx;
X[K] += (t - last_update[K]) Oxdot[k];
print( t, k, x[K]);
xdot[k] += Dxdot[K]; last_update[K] = t;
add_set( &active_components, fanout(k));
} return( active_components);

algorithm4

For the components imctive_components, some
connectedx and/orx are modified and hence awe
evant for these components is to be determined. If the
earliest gent is selected, the corresponding rank one

update is to be generated, and the entire process repeats.

Experimental results

In the table bely, some data is shwen on the achied
latengy behaviour, and the corresponding locality of the
involved computationsFor four circuits, the number of
circuit components is gén, together with the dimen-
sion of the netwrk matrix and the number of nonzero
elements in the L/U decomposition.

The four circuits are respeatly (GCD) a logic circuit
built with macromodels of all the logicages, (PLL) a
simple macro-modeled phase leckloop (oscillator)
circuit, (shift) a sixteen stage nmos shifgister and
(oscll) an elen-stage ring oscillatoruilt with cmos
inverters.

circuit # matrix  L/U rank-1 F/B
name comp size elmnts elmnts elmnts
GCD 602 618 2051 16 14

PLL 9 10 36 10 35
shift 160 599 3003 44 634
oscll 22 105 624 50 223

The column rank-1 elmnts’ gies the average number
of elements in the L/U decomposition thaasvmodi-
fied after a rank one update to the ratwmatrix. The
column 'F/B elmnts’ lists theverage number of ele-
ments in the L/U decomposition thaasvused (read) by

a forward and backard substitution phase.oF the
lateng behaviour, both these numbers are an indication
for the amount of CPU ffrt, and are to be compared
with the total number of nonzero elements in the col-
umn 'L/U elmnts’.

As can be ¥pected, the mos transistor circuits are more
‘transparent’ to localariations, hee nore fill-inns in
the matrix, and (thus) more operationfeeff a lager
part of the circuit.

As overall result, the required CPU time for L/U
decomposition updates becomes about 1% of the total
CPU time in our simulatorThe forward backvard sub-
stitution tales 3% to 9% of the total CPU timén the

shift register kample (160 mos transistors and capaci-
tors), the repeatedly computAa contained on\erage

16 nonzero elements fefting 6 components.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

References

Bennett,J.M.; "Triangular Factors of Modified
Matrices", Numerische Mathematik vol. 7, pp
217-221, (1965)

DeRosie,J. A.; Roe, M.; and Hippel, K.W
"Hierarchical interconnection of s@d subsys-
tems using plicit multiterminal representa-
tions", in: Proc. 13th Int. Symp. on Circuits and
Systems, Houston, ©xas, pp. 1015-1019,
(1980).

Eijndhoven, J.TJ. \an; "A piecavise linear sim-
ulator for lage scale intgrated circuits” PhD
Thesis, Eindheen Univ. of Tech., Eindhaen,
The Netherlands, (1984)

Eijndhoven, J.TJ. \an; "Piecwise Linear Anal-
ysis" in: Analog Circuits: Computer Aided Anal-
ysis and Diagnosis T. Ozawa (ed.), Marcel
Dekker inc., Nev York, (to appear)

Fujisava T, Kuh E.S., Ohtsuki .T "A Sparse
Matrix Method for Analysis of Piewdse-
Linear Resistie Networks", IEEE Transactions
on circuit theory vol. CT-19, no. 6, pp 571-584,
(1972)

LelarasmeeE.; Ruehli, A.E.; and Sangianni-
Vincentelli, A.L.; "The vavdorm relaxation
method for time-domain analysis of gar scale
integrated circuits"]EEE Trans. Comput.-Aided
Des. Integrated Circuits & Syst., vol. CAD-1,
pp. 131-145, (1982).

Ortega JM., Rheinboldt WC., Iterative Solution
of Nonlinear Equations in Several Variables,
Academic Press, (1970)

Rabbat,N.B.G.; Sangiganni-Vincentelli, A.L.;
and Hsieh, H.Y "A multilevel newton algo-
rithm with macromodeling and latendor the
analysis of lage-scale nonlinear circuits in the
time domain",IEEE Trans. Circuits and Syst.,
val. CAS-26, pp. 733-741, (1979).

Vlach, M.; "LU decomposition and forard-
backward substitution of recuns lordered
block diagonal matrices”, inProc. 16th Int.
Symp. on Circuits and Systems, Newport Beach,
Calif., pp. 427-430, (1983).



