
proc. Int. Symp. on Circ. and Systems (ISCAS)
June 1988, pp. 623-626, Espoo, Finland. (reformatted)

Latency exploitation in circuit simulation
by sparse matrix techniques

J.T.J. van Eijndhoven, M.T. van Stiphout

Eindhoven University of Technology
Dept. of Electrical Engineering

PO box 513, 5600MB Eindhoven, TheNetherlands

Abstract

The most important operations for a circuit simula-
tor are component model linearisation, updating the
network matrix, perf orming an L/U decomposition
on this matrix, and solving the network variables by
forward and backward substitution. Methods are
presented to keep ALL these operations localized to
the part of the network that is active at the current
timepoint, thus obtaining a considerable reduction
in computational effort. The methods depend upon
the sparse matrix structure itself, yielding a very
effective ’fine grained’ latency exploitation, contrary
to methods based on the large blocks specified by the
circuit hierarchy. Results are presented, obtained
fr om an implementation of the algorithms in a piece-
wise linear circuit simulator with an implicit multi-
rate integration scheme.

Intr oduction

Traditional circuit simulation programs are known to be
extremely computationally expensive. This is mainly
due to the basic scheme where at each timepoint a New-
ton-Raphson iteration is needed, which at every cycle
performs a full L/U decomposition and forward back-
ward substitution.

Several attempts were made to use the (designer speci-
fied) circuit hierarchy to skip the evaluation of inactive
parts of the circuit [2] [3] [8] [9]. These approaches
spend some overhead on keeping data integrity on the
module boundaries but can be effective for ’good’
designs. However designers tend to make little use of
hierarchy, creating large modules inefficient for latency
exploitation.

As alternative, wav eform relaxation is gaining popular-
ity [6]. Here a partitioning in relatively small modules
which are analyzed separately, forms an ideal basis for
latency exploitation. However the cost of the required
repeated analysis and the often used limitation to MOS
circuits are serious drawbacks.

The method presented in the next sections is able to
limit the computations to the active subnetworks only,
by carefully optimizing sparse matrix techniques. Thus

skipping operations comes on a ’per matrix element’ or
’per vector element’ basis, leading to an efficient simu-
lation scheme, independent of the (hierarchical) struc-
turing done by the circuit designer. The method makes
use of a rank one (vector product) update strategy on
the network matrix, which can be used in a Newton-
Raphson based simulator. Howev er we implemented
the method in a piecewise linear circuit simulator,
where this rank one update comes easily and explicitly
available. Furthermorean implicit multirate integra-
tion scheme is used (assigning different integration
stepsizes to the individual components), leading to an
ev ent driven analysis, ideally matching the latency
exploitation.

System overv iew

A DC solution is assumed to be found before the tran-
sient analysis starts.The network variables (voltages,
currents) are denoted byx. During the transient analy-
sis we will always solve for ẋ, the time derivative of x,
and use the appropriate jacobians and source vectors
(J, b) of the components.

For the transient analysis a multirate integration scheme
is used. If at time t a componentk is assigned its indi-
vidually optimized timestephk, this hk is used to gen-
erate the jacobian(Jk, bk). This componentk now
posts an event at time point min(t + hk, t + ∆tk),
where ∆tk is the time distance towards the nearest
boundary of the piecewise linear component model.
(With given x and ẋ this boundary is easily explicitly
determined.) Ifother events (from other components)
occure before thist + hk, which affect componentk
due to modifications iṅx, this componentk is checked
for the validity of its event. If necessary, this event is
rescheduled. Ifthe event is finally serviced, the jaco-
bian is allowed to change again. Crossinga boundary
of the model corresponds to a rank one update, assign-
ing a new different time steph corresponds to a rankp
update, withp the dynamic order of the component
(usually one, two or three).

With this scheme, components which are in a relative
quiescent state, are automatically assigned large time
stepsh, and hence generate few events. Nodesin the

network (variables) which are incident to these quiet
components only, will show almost no variation in ẋ,
and are probably not affected by other fast changing
components. The purpose of this paper is to present
methods to exploit this latency behaviour, based upon
the sparse matrix structure instead of being based upon
a user defined hierarchy.

A new L/U decomposition of the network matrix is now
to be determined with every modified jacobian, and a
new vector ẋ is to be solved. For both of these opera-
tions, algorithms will be presented that process only the
smallest possible part of the L/U decomposition and the
involved vectors.

These algorithms deliver a vector∆ẋ, a sparse update to
the vectorẋ. Now for all nonzero elements (indices) of
∆ẋ the vectorsx andẋ are updated to the current time-
point, and a new event is scheduled for the components
which are incident to these modified elements.

The datastructure for the sparse matrix storage is built
with linked C structures. Each nonzero element of the
L/U decomposition occupies one structure containing
the element value, its row and column indices, and two
pointers to the next element in the same row and the
next element in the same column.Three arrays are in
use with pointers to the first element in each row, the
first element in each column, and to each diagonal ele-
ment (the pivots).

The sparse vectors are also stored with a C structure for
each nonzero element. Besides the element value, this
structure contains the element index and a pointer to the
next structure. The linked datastructures for both the
sparse vectors and the sparse matrix are ordered:
traversing the list gives the elements in ascending
index.

The rank one update

The first operation is to obtain the row and column vec-
tors that define the rank one update to the jacobians(s).
For Newton-Raphson based simulators this has to be
done inside every Newton iteration, with a scheme as
for instance described in [7], section 7.3.In our imple-
mentation of an event driven piecewise linear simulator,
the crossing of the edge of the model of a component,

explicitly gives the required row and column vectors,
and no iteration is needed, see [4] or [5].

Assume(A, b) represents the matrix of network equa-
tions, with the source-vector b, and a solutionẋ of
Aẋ + b = 0 is known. Furthermorethe row and col-
umn vector (r andc) and scalarp, are known, defining
the rank one update to(A, b) for which the L/U decom-
position has been determined.
So (A′, b′) = (A, b) + c ⋅ (rt, p), and ẋ′ has to be
solved fromA′ẋ′ = b′.
Let ẋ′ = ẋ + ∆ẋ, then substitution leads to:

(A + c ⋅ rt) ∆ẋ + c ⋅ (p + rt ⋅ ẋ) = 0

In the event driven simulation scheme, the update vec-
tors c and r, correspond to the update of the jacobians
of one or a few components, and hence have only a very
small number of nonzero entries.Therefor the above
source vectorc ⋅ (p + rt ⋅ ẋ) will have as few nonzero
entries, and can be determined with a corresponding
efficiency.

In the next two sections, algorithms are presented to
determine the L/U decomposition of(A + c ⋅ rt), and
produce the solution∆ẋ by a forward backward substi-
tution process, where the amount of work is controlled
by the number of nonzero updates, and not by the
matrix sizen.

The L/U decomposition update

The most important step is of course the determination
of the new L/U decomposition after the row and column
update vectors of the jacobian(s) are found.It is well
known that a new L/U decomposition can be efficiently
found by an update strategy in 2n2 operations (for a full
matrix of sizen), contrary to then3 operations required
for an entirely new L/U decomposition. The original
algorithm as devised by J.M. Bennett [1] is given
below.

Assume a decomposition ofA is known according to:

A = L ⋅ D ⋅ U
with:
Lii = Uii = 1, 1≤ i ≤ n
Lij = Dij = Dji = Uji = 0, 1≤ i < j ≤ n

Bennetts algorithm efficiently determinesL′, D′ andU′
such that:

L′ ⋅ D′ ⋅ U′ = A′ = A + c ⋅ rt

The algorithm, simplified for a rank one update only,
can be given as:

d = 1
for i = 1 to n do
begin Dii = Dii + ri ⋅ d ⋅ ci

p = ci ⋅ d / Dii , q = ri ⋅ d / Dii , d = d - p ⋅ Dii ⋅ q
for j = i + 1 to n do
begin cj = cj - Lji ⋅ ci

Lji = Lji + cj ⋅ q
rj = rj - Uij ⋅ ri
Uij = Uij + rj ⋅ p

end
end

algorithm 1

The Sparse Matrix Implementation

This update strategy is well suited for a sparse matrix
implementation, as was pointed out already in [5].

Our contribution is an efficient sparse implementation
of the L/U update and forward backward substitution,
which is able to skip many piv ots, resulting in a very
low average computational complexity. This skipping
of pivots basically corresponds to skipping part of the
circuit, giving the desired latency exploitation. If for
instance in the above algorithm ci = ri = 0 for any i,
then the body of the outer for-loop can be entirely
skipped.

The vectorsc and r are expected to have only a very
few nonzero entries.These are stored in sparse form,
and the for-loops are modified, generating directly use-
ful indicesi without trying all values fori one by one.

The algorithm is given below, in C syntax.

void ludec_upd(r, c)
{ /∗ r and c are the rank one update vectors ∗/

d = 1.0;
while (r || c) /∗ not both vectors empty yet ∗/
{ /∗ get first nonzero elements in either row or col∗/

i = get_first_elmnts(&r, &c, &r_i, &c_i);

D[i]->value += r_i ∗ d ∗ c_i;
p = c_i ∗ d / D[i]->value;
q = r_i ∗ d / D[i]->value;
d -= p ∗ D[i]->value ∗ q;

/∗ Update row vector and U-row ∗/
mutual_update(r, D[i], right, -c_i, q);

/∗ Update col vector and L-column ∗/
mutual_update(c, D[i], down, -r_i, p);

}
}

algorithm 2

In the above program,get_first_elmnts() determines
from the first elements in each sparse vector (if not yet
empty) the smallest index i of a nonzero element. For
this index, the element valuesr_i andc_i are returned,
which are made zero if the index was absent in the
respective vector. If a nonzero element of a vector is
returned, the vector pointer is set to the next element,
ultimately resulting in an empty vector, terminating the
enclosingwhile loop.
In practice it is found that the above routine produces
on average only a few indicesi to recompute, resulting
in a computational complexity much lower thann, the

size of the network matrix.

The above algorithm is of course only a basic stripped
version: the real program code has to check for the
numerical condition of the (new) pivot, and take appro-
priate measures if necessary.

The mutual_update() routine performs a simultane-
ous scan over a sparse vector (r or c) and a matrix row
or column (U or L). During this scan it generates the
required indices j, in the same way as
get_first_elements(), performing the updates, due to
the inner for-loop of algorithm 1, in a time complexity
proportional to the number of nonzero elements
encountered. Onav erage these are again only a few
elements, almost independent of the matrix (circuit)
size.

The forward backward substitution

The algorithm of the previous section generates the L/U
decomposition of(A + c ⋅ rt), and now we only need a
suitable forward backward substitution to solve for ∆ẋ.
Again we expect for the source vector
s = c ⋅ (p + rt ⋅ xdot) only a very small number of
nonzero elements, requiring an algorithm which doesn’t
check all indices one by one.Below the algorithm is
given of the forward substitution process.

SPARSE_VEC forward_subs(s)
{ /∗ solve y from Ly+s=0, s is sparse source vector ∗/

for (y=NULL; s; s = s->next)
{ j = s->inx;

vec_fillin(&y, j); /∗ create new y in rev erse order ∗/
y->value = - s->value; /∗ Note Ljj == 1 ∗/
/∗ update s[i] by adding Lij ∗ y[j] for i > j ∗/
mutual_update(s->next, D[j]->next[down],

down, y->value, 0.0);
} retur n(y);

}
algorithm 3

In the above algorithm, the use ofmutual_update()
is somewhat overkill (with the given parameters, the
matrix column isn’t updated), but is suitable as a com-
pact specification of the algorithm.Of coursey might
have many more nonzero elements thans, depending
upon the connectivity and behaviour of the circuit.

The backward substitution process (solving∆ẋ from
U ⋅ ∆ẋ = y) is comparable and not listed any more.
For the backward substitution the matrix elements ofU
are also scanned column wise, and they is needed in
reverse order (highest indices first), as generated above.

The vector update

The forward backward substitution process yields a
sparse vector∆ẋ, for the update oḟx at a certain inte-
gration timepointt. Some elements ofx need to be
updated now, and a set of components is to be created
which are ’active’ and have to be checked for their new
ev ent.

For a proper sparse update ofx, a vector last_update
is kept, containing the timepoint of the last update tox.
The updating algorithm is now easily stated as:

COMPONENT_SET update_x(t, Dxdot)
{ clear_set(&active_components);

for (; Dxdot; Dxdot = Dxdot->next)
{ k = Dxdot->inx;

x[k] += (t - last_update[k]) ∗ xdot[k];
pr int(t, k, x[k]);
xdot[k] += Dxdot[k]; last_update[k] = t;
add_set(&active_components, fanout(k));

} retur n(active_components);
}

algorithm 4

For the components inactive_components, some
connectedx and/or ẋ are modified and hence a new
ev ent for these components is to be determined. If the
earliest event is selected, the corresponding rank one
update is to be generated, and the entire process repeats.

Experimental results

In the table below, some data is shown on the achieved
latency behaviour, and the corresponding locality of the
involved computations.For four circuits, the number of
circuit components is given, together with the dimen-
sion of the network matrix and the number of nonzero
elements in the L/U decomposition.

The four circuits are respectively (GCD) a logic circuit
built with macromodels of all the logic gates, (PLL) a
simple macro-modeled phase locked loop (oscillator)
circuit, (shift) a sixteen stage nmos shift register, and
(osc11) an eleven-stage ring oscillator built with cmos
inverters.

circuit # matrix L/U rank-1 F/B
name comp size elmnts elmnts elmnts

GCD 602 618 2051 16 14
PLL 9 10 36 10 3.5
shift 160 599 3003 44 634

osc11 22 105 624 50 223

The column ’rank-1 elmnts’ gives the average number
of elements in the L/U decomposition that was modi-
fied after a rank one update to the network matrix. The
column ’F/B elmnts’ lists the average number of ele-
ments in the L/U decomposition that was used (read) by
a forward and backward substitution phase. For the
latency behaviour, both these numbers are an indication
for the amount of CPU effort, and are to be compared
with the total number of nonzero elements in the col-
umn ’L/U elmnts’.

As can be expected, the mos transistor circuits are more
’t ransparent’ to local variations, have more fill-inns in
the matrix, and (thus) more operations affect a larger
part of the circuit.

As overall result, the required CPU time for L/U
decomposition updates becomes about 1% of the total
CPU time in our simulator. The forward backward sub-
stitution takes 3% to 9% of the total CPU time.In the
shift register example (160 mos transistors and capaci-
tors), the repeatedly computed∆ẋ contained on average
16 nonzero elements, affecting 6 components.

References

[1] Bennett,J.M.; "Triangular Factors of Modified
Matrices", Numerische Mathematik vol. 7, pp
217-221, (1965)

[2] DeRosie,J. A.; Roe, P.H.; and Hippel, K.W.;
"Hierarchical interconnection of solved subsys-
tems using explicit multiterminal representa-
tions", in: Proc. 13th Int. Symp. on Circuits and
Systems, Houston, Texas, pp. 1015-1019,
(1980).

[3] Eijndhoven, J.T.J. van; "A piecewise linear sim-
ulator for large scale integrated circuits" PhD
Thesis, Eindhoven Univ. of Tech., Eindhoven,
The Netherlands, (1984)

[4] Eijndhoven, J.T.J. van; "Piecewise Linear Anal-
ysis" in:Analog Circuits: Computer Aided Anal-
ysis and Diagnosis T. Ozawa (ed.), Marcel
Dekker inc., New York, (to appear)

[5] Fujisawa T., Kuh E.S., Ohtsuki T., "A Sparse
Matrix Method for Analysis of Piecewise-
Linear Resistive Networks", IEEE Transactions
on circuit theory vol. CT-19, no. 6, pp 571-584,
(1972)

[6] Lelarasmee,E.; Ruehli, A.E.; and Sangiovanni-
Vincentelli, A.L.; "The wav eform relaxation
method for time-domain analysis of large scale
integrated circuits",IEEE Trans. Comput.-Aided
Des. Integrated Circuits & Syst., vol. CAD-1,
pp. 131-145, (1982).

[7] Ortega J.M., Rheinboldt W.C., Iterative Solution
of Nonlinear Equations in Several Variables,
Academic Press, (1970)

[8] Rabbat,N.B.G.; Sangiovanni-Vincentelli, A.L.;
and Hsieh, H.Y.; "A multilevel newton algo-
rithm with macromodeling and latency for the
analysis of large-scale nonlinear circuits in the
time domain",IEEE Trans. Circuits and Syst.,
vol. CAS-26, pp. 733-741, (1979).

[9] Vlach, M.; "LU decomposition and forward-
backward substitution of recursive bordered
block diagonal matrices", in:Proc. 16th Int.
Symp. on Circuits and Systems, Newport Beach,
Calif., pp. 427-430, (1983).

