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Abstract

Thepaper presentsadata flow graph exchange standard,
agreed upon and used by the partners in the ESPRIT re-
search project ASCIS. Thesedata flow graphsaregenerated
fromknown user interfacelanguagessuchasSlage, VHDL,
and C, and are used to drive architectural synthesis pack-
ages and formal verification. The graph semantics are de-
fined to offer a unique degree of freedom for time and area
optimizationsin synthesis, by giving a maximal parallel re-
presentation and combining control and data flow in a con-
sistent way. The graph textual exchange format was devel-
oped to allow site and application dependent extensions,
without disturbing tools who do not know about these. This
way both upwards and downwards compatibility isobtained
for future extensions. A very broad application area is in-
tended, covering control dominated designs, highly and
lowly multiplexed data paths, up to systolic arrays.

1. I ntroduction

This paper describesdata flow graph (DFG) standard

tendedas intermediatéorm between user oriented inter
faceqlanguages, schematics) and synthesis and verification
tools,as well as serving as intercharigenat between dif
ferentmachines or sites. Therefor the accurate definition of
the graph semantics are of utmost importance. Allowing
maximal freedom to synthesis tools for the generation of
differentsolutions in diferent architectural styles without
imposingany unnecessary restriction, was another develop
mentgoal. Due to the long term research aspect of the related
work and the diferent requirements of individual sites and
tools, flexibility and extensibility were major design goals
for the file format. Atextual format was strongly preferred
over a binary format foseveral reasons, but human read
ability was hardly a design issue. The intended usage is
illustratedin Figure 1.

Theadvantage of this schernseof course the separation
of the diferent synthesis toofsom the complex user level
interfacesThe DFG format is a relatively simple interface,
both in syntax and in semantics. The detailed semantical
interpretationof languages like VHDL and ELLA for syn

for thesynthesis and verification of integrated circuits from thesispurposes is not trivial.

a behavioural level description. Its development started

Dueto the EDIF and LISP like structupd the format

backin 1987. In 1990 the format and its semantics were With braces and keywords, individual tools and sites can add

adoptedy the ASCIS project (ESPRBasic Research Ac
tion 3281), a cooperation betweeaven universities and

researchinstitutes throughout Europe. The formatiris

informationto it, without disturbing other tools who do not
know about these. Thus tHermat can optionally be used
throughouthe synthesis process, by repeatedly annotating
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Figure 1. DFG positioning
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thegraph with the results of individual tools. This leads to a 2, Related work

schemaas in Figure 2. )
The use of data flow graphs or demand graphs is well

acceptedn architectural synthesis. However closer exami

i nation shows a wide variety in the concepts used.
| Graph Optimization |= _ 2.1 Treerepresentations
Somesystems usiaternally a tree representation instead
‘ Module Selection I — of a real data flow graph. This tree is often similarpase
tree, from a supported textual interfacgHilfin84,
‘ Scheduling I Marwed85]. However such a representation is not well
suitedto support manyalgorithms in synthesis, such as
‘ Allleezian - structural optimizations. Hence implgmentatiobecome
> unnecessargomplex,must create derived data structures,
i or just overlook optimization possibilities.

: 2.2 Semi data flow representations
Network Generation

Severabystems do not have a real d&ta graph where
Figure 2. Extended use of the DFG. theedges represewmdlues, but stick to operations awdri-
ablesinstead. These variables can get modelled with nodes
[Knapp85,Campos89]. Such a representation is easily built
from procedural programming languages, since no real data
flow analysis is required. If thignalysis is not done, the
representatiocontains many timing and mapping restric
o tionswhich arenot necessarand severely limits the search
DFG text files is extremely fast, and hence not of reat con g cfor optimal solutions of thgenerated architecture. A
cern. S relatedapproach is the introduction of sequence edges to
Theemployed graph model does not distinguish betweengengtethe sequential ordering of operations as found in a
datapath and control floyand allows cycles to model loops  (proceduralinput language [Brayton88].
in the algorithmic behavipproviding maximal freedom for
different implementation styles. The uniform and combined 2.3 ~ Separation of data and control flow
treatmenof data and control has resulted in both a concise
semanticatlefinition and an extrenflexibility for architec

The decoupling of the synthessoftware in several
smallertools, greatly improves the manageability of such a
systemand allows &hoice of algorithms for the basic tasks.
On modern workstations the parsing and generatighef

Many systems limit the data flow analysis to so-called
) ) ) ‘straightline code’ onlygenerating several blocks with data
tural synthesis. The DF@rovides a maximal parallel de g, “code [Lis88, Pangrle87]. Conditional constructs,
scriptionof the algorithm, from which many design alterna 4405 and procedure calls are represented in a separate con
tivescan be generated. The generation of such agraph from & graph. Although relatively easy to implement, this again
procedurabequential programming language requiresla  severely limits many algorithms (graph optimizations,
dataflow analysis, involvinga detailed lifetime and scope  schedulingallocation) in their search space, increasing the
analysisthrough conditional statements, loops, and proce risk of staying withsuboptimal solutions.dfovercome the
dureinterfaces. The complexity of this taskxnwithnthe  mostsevere limitations, simple conditional constructs might
numberof operations in the input text. mactice thismeans  getmoved intothe data flow blocks [&lker87][Paulin91].
that descriptions ofelatively complex chips (programs of The imposed limitation of having clock cycle boundaries
severahundred lines) can be converted to a DFG represen aroundthese blocks (at least for lodgdies) is silently
tationin a few seconds cfime on a standard workstation. accepted.
Thecombination of the consistent ngarg of data and con
trol flow even forloops,and the maximal parallel represen 24 Our exchange for mat

tation are unique features of this model. It is alsodbh&a Sinceindividual synthesis systems adoptfdient ap

flow analysis that resolves the veryfeient nature of the  proachesand limitations, an exchandgermat designed to
behaviouralinput languages into a uniform semantics. bridgesuch systems should by itself notimpose comparable
Hencethe dificulty of this step depends upon the specific restrictions, to allow a fair design exchange. The freedom to
languageln particular full VHDL is very hard due to its  allow a clock cycle boundary anywhere itoap, instead of
eventdriven semantics, and subsettisg@imost inevitable  beingforced to put this at the loop start or loop end, or even
asin other synthesis systems. to choose this boundamt different places for individual
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variables,seems a unique generalityfasbd by our ap To provide a more accurate definitiof this execution
proach.Thesupported full data flow analysis through loop behavior we will distinguishbetween a few diérentnode
and procedure call interfaces, furthermore turns often re types.

quiredtaskslike loop unrolling or procedure inline expan
sioninto trivial operations. Conditional and losgatements
in the input leado a comparable block structuring of our Operationgan be arithmetic, likg, —, +, ++, otboolean
graphs,allowing eficient synthesis algorithmpStok91]. like 0, 00, <, =, or canbe more complex functions. The
Another combined data and control flow graph was devel availableset of operations is not defined nor restricted by the
oped in the SPRITE project, which seems more confined DFG format. However to successfully exchange designs
towardssignal processing applications, due to limited eom betweersites, it is required to agree on the names of a few

3.2 Operation nodes

municationfunctionality [Krol92]. basicoperations, their allowatimber of inputs, and —espe
cially for non—commutativeperations— on the names of
3. TheDataFlow Graph their input ports. The format also provides for nesting of

graphsin the same way as procedures in normal program
ming languages. The instantiation of another graph is per
TheDFG consists of nodes and directed edgesndthes formedby using a node type, referring to the name of a graph
represenbperations in the behavioural specification, and  defined elsewhere in the textual description. Despite this
theedgesmodel the transfer abluesbetween these. Thusa nodetype, an instantiation distinguishes itsiglfno way
single edge indicates that the result of one operation isfrom a normal basic operation, and hence these can be re
passedo the agument of another one. One single data value gardedas instantiations of implicitly defined procedures.
instances definedo be aoken. We define thexecution of Theexecution of an operation thus might involve the execu
anoperation (node) as the process where a token is fetchedon of a complex subgraph.
andremoved from the incoming edges, and a token contain
ing the resulof the operation is put on each outgoing edge.

3.1 Thebasic approach

3.3 Input and Output nodes

The execution order of the operatiomsthe graph is thus Everygraph requires at least one node of type input, and

constrainedby the partial ordering of the nodes as defined by oneof type output. Nodesf type input are thenly nodes

thedirected edges. without input ports, and nodes of type output aredhly
Every algument of an operation cdie seen as anput nodeswithout output ports. If the graph would be instan

port of the operation, and the single result can be seen as théatedelsewhere as operation, then the naafi¢isese input
output port of the operation. It is required for a DFG that andoutput nodes define the port names of the operation.
only one incoming edge is allowed to arrive on any input  For morecomplex input/output communication the put
port. However several outgoing edges can leave from theandget nodes should be used as defined.later
outputport. In general nodes can have several output ports,
eachwith zero or more outgoing edges. However in many 34  Constant nodes
casegcommutative operations with one single output) there  Nodesof type 'constant’ are nodes which generate a con
is no reason to distinguish between individual ports on astantdata value at their single output pox.ifidicatewhen
node,and hence ports are often left undefined. thistoken isto be produced, these nodes also have one input
In theory we will allow multiple tokens to be resident port, and hence can be treatedtie same way as unary
(queuedpn any edgegiving maximal freedom in schedul  operatorsEdges with the sole purpose to activate 'constant’
ing the execution of operations ouéne. However every nodesare distinguished by giving them typsource’,to
body who wants to use (createlich a schedule is itself indicatethat the data value of their tokens is actuity
responsiblefor synthesizing suitable hardware for these nored.The usage of a constant node, together with a simple
gueuesDue to the DFG properties, the finallgsulting operationand a pair of input/output nodes is depicted in
values(tokens) do notlepend upon the chosen execution Figure 3.
order and itis always possible thioose a restricted order of
evaluation in which never more than one token is residenton3'5 Branch and Merge nodes
anyedge [Jong91]. A branch node passes the token from the incoming data
This token passingnethod, defines the algorithmic-be edgeto one output port, whidk identified (selected) by the
haviorof the graph, withoutmposing any restrictions onthe  valueof the token on the control input. Thus the node can be
timing of the hardware to hgenerated. This was regarded a executedf both inputs have a token, and as result one token
veryimportant propertyBy adding speciatiming’ edgego will appear on precisely one output port.
thegraph, constraints on thiene behavior can be specified Merge nodes are dual to branch nodes pasaingken
if so desired. Furthermore the synthesis system is stittfree  from justone incoming data edge, selected by the value of
chooseany clocking scheme. thetoken orthe control edge, to the single output port. (The
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source edge ,’ \ data edge

X=X+3; while (g— > 0)

o { x=x+3;}
oud

Figure 3. Simple DFG with constant node.

executiorrule of this node is dérent: it can execute ason
asa token is available on the control inpstwell as on the
selectednput port.)

The branch and mge nodes are necessary for algerith Figure 5. DFG while—do example.
mic constructs likef ... then ... else, orcase ... of. An obtainatoken at their control input, selecting the input port
exampleof such a construct is shown in Figure 4. for external data to enter the loop. The exit nodesaio

obtainsuch an initialization token! If the graph is repeatedly
executedfor different sets of input tokens, the loopn
structsmust not be reinitialized for eadhput set: such
tokensare automatically left after each loop termination.
Although the token passing semantics would gikie
impressiorof a sequential executiad the loop, this forms
in Nno way a restriction towards fifent implementations.
Notethat the unrolling (unfolding) af loop in the DFG is a
simpleand straightforward operation. If the loop is to be
implementedsequentiallythe token flow leavesiaximum
flexibility with respectto synchronization and timing issues.
Of course clock cycle boundaries and state transitions must
be introduced to execute the loop, thére is a free choice
for the placement of this clock boundatydoesnot haveto
be at the entry nor at the exit nodes. It is evenperfectly
Figure 4. DFG if—then—else example. allowedto desynchronize the loop cycling offdifentvari-
ables,for instance one variable might have completed 10
36 Exitand Entry nodes cycles,whereas another variable of the same loop has done
just 2 cycles. However such asynchronous executsn
quiresqueueing ofmultiple tokens on (at least) the control

if (@)
then a++;
else b++;

Exit and entry nodes are functionally identical to the
branchand megenodes respectivel{However these nodes
areused tdbuild loop constructs, which could originate from €dges.
while ... do orfor ... do statements. The connectivity of the 7
exitand entrynodes to create a loop construct is depicted in
Figure 5. Getand put nodes are to provide a mechanism forcom

Theloop construct introduces cycles in the DFG. This municationprotocols with the outside world and can appear
are cycles through entryexit and loop bodyand cycles anywherein the graph, such as inside’'dr 'loop’ con
throughentry and loop test. These cycles are relatively easystructs,in contrasto 'input’ and 'output’ nodes. These get
to find, due to the structure of the loop construct, tred and put nodes make a reference’ports’ through which
entry and exitnodes separate disjunct acyclic subgraphs externalcommunication is to take place, which can for in
from the environment. Other cycles are not allowed in the stancemodel pads on the chip boundary
DFG. Note however that loop constructs can nest. Getand put nodes which use one physprat are linked

To allow a proper execution of these loops withttien in sequential 'chains’ to set the order in which read and write
passingmethod, a special initialization is required: When operationsshould appear on the port. When put and get
the execution of a graph is started, all entry nodes mustnodesappear within ’if or 'while’ constructs, there chain

Get and Put nodes
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edgesalso appear irthese constructs, with their own parallelism (independence), allowing more freedom in
branch—mage or entry—exit node pairs. If put or get nodes scheduling.For this purpose the chaining of retrieve and
for one physical port appear both in a main graph and inupdatenodes is in general structured as a connected acyclic
instantiatedprocedures, these edges should go through thegraph. An example of array usage is given in Figure 7.
procedurecall and body by hereto added input and output /

portson the procedure interface. The usage of put and get is

depictedn Figure 6. . '
chain edge

! I
int A[10]; data AN @ I
for (i=0; i<10; : : I
i++) ' X
Al = 0; L © }
X = get(); . qlham edge ‘ |
if (x<0 ' '
(x<0) L |
X = get(); Cootg ol 1 0
X++: RN
put(x); -
Figure 7. DFG array example

4. Datatypesand widths

. . 4.1 Introduction
chain edge '\

1 In the DFG data transpastrepresented by edges. Hence
data types and data widths are (optional) properties of edges
in the graph. Theata width (edgewidth) is the number of

bits that conceptually make up tliata value and are-in
@ volvedin the dataransfer In general this can be tifent
from the number of wires in theesulting hardware: The
mappingto hardware could generate things as dual rail or bit
serialtransmission.

3.8 Array operations The data type determines the interpretation of the bit

For operations on arrays three node types are prc,Vided:patternto a nymeric value. This data type is of imporftance
Thenode type "array’ functions asray declaration. The fo_r the sglectlon pf actual hardware modules pe_rforrﬂnag
declarationcontains statements giving thiémensionality ~ arithmeticoperations of th@odes. The mechanism of-se
andsize(s) of the arrayOptionally initial values are pro  lectinga hardware module depending on the data types of
vided.The "array’ node has outgoing chain edges, providing the attached edges can be referred towsloading. The
linkageto the other two related node types: 'retrieve’ and datatype is furthermore required for the processviith
'update’. adjusting. Thisis required when the width of an edge does
The'retrieve’ nodes are usedread data values fromthe notagree with the width of the port to which it connects.
array Theyhave input ports for indices to address one value, 4.2
andadata output port.The 'update’ nodes are used to write
valuesin the arrayThey have edges providing indicesasthe A data type is attached to an edgth adata type name.
'retrieve’ nodes, and have a 'data’ input port for the value to Sucha data type name is introduced atedined with file
be written. scope.This data type def statement is located outside any
Chainedges are used to specify a (partial) ordering in graph,introduces the datgpe name, and optionally speci
which the retrieve and update operationast take place. fiesthe numeric interpretatiasf the bit pattern. For now the
Comingfrom a sequential inplanguage, it seems naturalto  syntaxallows to express twe’complement, unsigned, and
connectall retrieve and update nodes ame serial list signed magnitude, binary coded integer and fixeoint
(chain).However a careful analysis might reveal a degree of numbersas well as booleans.

Figure 6. DFG get and put example.

Datatype
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Up to now no formats are defined to handle things like
floating point numbers, text, records, or attributes as 'ad
dressf’, as well as counting schemes whicHealifrom the

5. Textual Format

Foran easy interface to various programming languages,

normallybinary number representation such as bcd (binary atext (ASCII) basedormat is used. This has the additional

codeddecimal) numbers. This means that for thessup

advantag®ef easy transfer betweenfaifent machines. The

porteddata types, you cannot express in the standard format.isp and EDIF syntax style using a pair of braces for each

your semantics (interpretation) of these values athilhe
level. However omitting the dattype interpretation, still

keywordensures simple parsing: any LL—1 parser is strong
enough,such as a recursive descent parser scheme: It fur

introduceghe data type name. Hence you can use this naméhermoreallows for local and future extensions to fhe

to overload the operatorand do your intended synthesis.
Howeverby just porting the DFG format, you canret
plainothers the intended semantics. Although the tgie
nitions have no direcsupport for record—like data struc
tures,the bit operations do allow you to extract or insert
bitfields.

4.3 Numeric value versusbit pattern

Numericvalues and bit patterns are semantically censid
eredas two diferent domains, which are bridged by data
typedefinitions. Wthout data type definitions the DFG can
operatdn the domain of numerical values. Consteaadties
canbe specified in the form of decimal numbers. Numerical
operationss +, —x, ++, ancdr2 operate as mathematieal
ly expected. The behavior this 'numerical value’ domain
correspondgo specificationdike computer programming
languagesEven 'low level’ languages as C, do not define
the behavior at the bit—level, but leatlais (on purpose)
machinedependent.

In the domain of bit patterns (bit vectors) the DFG can

mat,without disturbing already existing softwabeth up-
wards and downwards compatibility), and does not e
quirea set of reserved words, forbidden as identifier

Thebasic format is very simple: every statement forms a
list. Any list starts withan opening brace and a keyword on
which the application determines its interesttie list. The
items of the list are names, numbers and other lists, and the
listis terminated with a closing brace. If an applicatiorois
interestedn the information attached the keyword —or
doesnt recognize the keyword- it can skips list, without
knowing anything about its (structured) contents, by just
countingbraces. Hence every tool or site is free to add more
datafor its own purposél his property was considered high
ly important.

An unrestricted style of identifiegll printable charac
ters, unrestricted length, no reserved words) is chdsen
simplify the translation of other languages into this format.

6. Timing

Theformat allows an accurate control over timing prop

correctly pass around bit vectors as data values (tokens).erties,such that scheduling algorithms agenerate an &f

Constantsre specified in the form of strings of hexadecimal
oroctal digits. Bit operations as &, |, ~, bit—geare valid in
this domain.

Without the annotation with data types and data widths,

numericaloperations havandefined semantics on bit pat
terns(you cannot associate a value with theany bit oper
ationshave undefined semantics namerical values (you
don't know the involved bit pattern). Traddition of data

cientdesign, allowing options like chaining and multi—-eycl
ing. This timing information originates conceptually from
two different sources:

The behavioural design specification will normally in
cludetiming restrictions such as minimum amdximum
allowabledelays between (mainly input and outpapgra
tions,and ordering relations between these. This inferma
tionis represented in the format on additional timing edges.

typesand widths can be seen as the first hardware desigrFurthermoredata on desiredlock speeds can be repre

decisionsAfter adding them, numeric valueseautomati

sented.

cally converted to bit patterns and vice versa, hence numeric  The modulelibrary will provide information regarding

and bitwise operations can be freely intermixed. See
Figure 8.
numeric domain

data types
data widths

bit pattern domain

decimal const
+ = ++——x%
> < <[E#

hex, octal const
& | N~ && || EE

Figure 8. Numeric versus bit pattern domain
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theoperation nodes in the graph: real time delay of asynch
ronousmodules, and number of clock cycles for synehro
nousmodules together with leading and trailing real time
delayand allowed clock speeds. Furthermore ripple delays
canbe specified, allowing a reasonable estimatiototal
delaywhen stacking operation nodes like adders and array
multipliers.

7. Parameterization

Thetwo main reasons for parameterization of the DFG
are:



« Actual parameter assignment at the nodes of a geaph property allowing future extension. Thyntaxfurthermore
necessarto direct or control thgeneration of hardware  ensuresimple parsing, and does not create a set of forbidden

operators. wordsfor identifiers.
+ It should be possible to define a graph which is parame  Thetrue global data flow analysis and meof datand
terizedfor (at least) the width of its edges. controlflow, lead to a maximal parallel design representa

Parametempassing concepts can lead to an enormoustion. As result, unsurpassed freedomtiaoring and alloca
amountof extra syntax and constructs in a languagefai tion optimizations is obtained. The adopted data typing
thatthe DFG as exchange format, in contrast to a user inter methodis general, extendible and concise.
facelanguage, would be better served with a syntactically = Currentactivities concentrate on the inclusion of (partial)
minimal but still general enough scheme. Due tokeg synthesisresults in the format, and a C++ programming
word driven nature of the DFG format, extension remains interfaceand data structure to be used by all synthesis.
possibleof course. These considerations based the fellow
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