
Proc. of the Eur. Conf. on Design Automation (EDAC),
Brussles, Belgium, March 1992, pp. 193–199

193

A Data Flow Graph Exchange Standard*

Jos T.J. van Eijndhoven Leon Stok

Eindhoven University of Technology
The Netherlands

Abstract

The paper presents a data flow graph exchange standard,
agreed upon and used by the partners in the ESPRIT re-
search project ASCIS. These data flow graphs are generated
from known user interface languages such as Silage, VHDL,
and C, and are used to drive architectural synthesis pack-
ages and formal verification. The graph semantics are de-
fined to offer a unique degree of freedom for time and area
optimizations in synthesis, by giving a maximal parallel re-
presentation and combining control and data flow in a con-
sistent way. The graph textual exchange format was devel-
oped to allow site and application dependent extensions,
without disturbing tools who do not know about these. This
way both upwards and downwards compatibility is obtained
for future extensions. A very broad application area is in-
tended, covering control dominated designs, highly and
lowly multiplexed data paths, up to systolic arrays.

1. Introduction

This paper describes a data flow graph (DFG) standard
for the synthesis and verification of integrated circuits from
a behavioural level description. Its development started
back in 1987. In 1990 the format and its semantics were
adopted by the ASCIS project (ESPRIT Basic Research Ac-
tion 3281), a cooperation between seven universities and
research institutes throughout Europe. The format is in-

tended as intermediate form between user oriented inter-
faces (languages, schematics) and synthesis and verification
tools, as well as serving as interchange format between dif-
ferent machines or sites. Therefor the accurate definition of
the graph semantics are of utmost importance. Allowing
maximal freedom to synthesis tools for the generation of
different solutions in different architectural styles without
imposing any unnecessary restriction, was another develop-
ment goal. Due to the long term research aspect of the related
work and the different requirements of individual sites and
tools, flexibility and extensibility were major design goals
for the file format. A textual format was strongly preferred
over a binary format for several reasons, but human read-
ability was hardly a design issue. The intended usage is
illustrated in Figure 1.

The advantage of this scheme is of course the separation
of the different synthesis tools from the complex user level
interfaces. The DFG format is a relatively simple interface,
both in syntax and in semantics. The detailed semantical
interpretation of languages like VHDL and ELLA for syn-
thesis purposes is not trivial.

Due to the EDIF and LISP like structure of the format
with braces and keywords, individual tools and sites can add
information to it, without disturbing other tools who do not
know about these. Thus the format can optionally be used
throughout the synthesis process, by repeatedly annotating

VHDL ELLA HardwareC . . .

DFG

Architectural Synthesis Formal verification

other sites

Silage

Figure 1. DFG positioning

* This research is sponsored in part by the European Community under contract ESPRIT BRA 3281

194

the graph with the results of individual tools. This leads to a
schema as in Figure 2.

DFG

Graph Optimization

Scheduling

Allocation

Network Generation

Figure 2. Extended use of the DFG.

Module Selection

The decoupling of the synthesis software in several
smaller tools, greatly improves the manageability of such a
system, and allows a choice of algorithms for the basic tasks.
On modern workstations the parsing and generation of the
DFG text files is extremely fast, and hence not of real con-
cern.

The employed graph model does not distinguish between
data path and control flow, and allows cycles to model loops
in the algorithmic behavior, providing maximal freedom for
different implementation styles. The uniform and combined
treatment of data and control has resulted in both a concise
semantical definition and an extreme flexibility for architec-
tural synthesis. The DFG provides a maximal parallel de-
scription of the algorithm, from which many design alterna-
tives can be generated. The generation of such a graph from a
procedural sequential programming language requires a full
data flow analysis, involving a detailed lifetime and scope
analysis, through conditional statements, loops, and proce-
dure interfaces. The complexity of this task is n×n with n the
number of operations in the input text. In practice this means
that descriptions of relatively complex chips (programs of
several hundred lines) can be converted to a DFG represen-
tation in a few seconds cpu time on a standard workstation.
The combination of the consistent merging of data and con-
trol flow even for loops, and the maximal parallel represen-
tation are unique features of this model. It is also the data
flow analysis that resolves the very different nature of the
behavioural input languages into a uniform semantics.
Hence the difficulty of this step depends upon the specific
language. In particular full VHDL is very hard due to its
event driven semantics, and subsetting is almost inevitable
as in other synthesis systems.

2. Related work

The use of data flow graphs or demand graphs is well
accepted in architectural synthesis. However closer exami-
nation shows a wide variety in the concepts used.

2.1 Tree representations

Some systems use internally a tree representation instead
of a real data flow graph. This tree is often similar to a parse
tree, from a supported textual interface [Hilfin84,
Marwed85]. However such a representation is not well
suited to support many algorithms in synthesis, such as
structural optimizations. Hence implementations become
unnecessary complex, must create derived data structures,
or just overlook optimization possibilities.

2.2 Semi data flow representations

Several systems do not have a real data flow graph where
the edges represent values, but stick to operations and vari-
ables instead. These variables can get modelled with nodes
[Knapp85, Campos89]. Such a representation is easily built
from procedural programming languages, since no real data
flow analysis is required. If this analysis is not done, the
representation contains many timing and mapping restric-
tions which are not necessary, and severely limits the search
space for optimal solutions of the generated architecture. A
related approach is the introduction of sequence edges to
denote the sequential ordering of operations as found in a
(procedural) input language [Brayton88].

2.3 Separation of data and control flow

Many systems limit the data flow analysis to so-called
’straight line code’ only, generating several blocks with data
flow code [Lis88, Pangrle87]. Conditional constructs,
loops, and procedure calls are represented in a separate con-
trol graph. Although relatively easy to implement, this again
severely limits many algorithms (graph optimizations,
scheduling, allocation) in their search space, increasing the
risk of staying with suboptimal solutions. To overcome the
most severe limitations, simple conditional constructs might
get moved into the data flow blocks [Walker87][Paulin91].
The imposed limitation of having clock cycle boundaries
around these blocks (at least for loop bodies) is silently
accepted.

2.4 Our exchange format

Since individual synthesis systems adopt different ap-
proaches and limitations, an exchange format designed to
bridge such systems should by itself not impose comparable
restrictions, to allow a fair design exchange. The freedom to
allow a clock cycle boundary anywhere in a loop, instead of
being forced to put this at the loop start or loop end, or even
to choose this boundary at different places for individual

195

variables, seems a unique generality offered by our ap-
proach. The supported full data flow analysis through loop
and procedure call interfaces, furthermore turns often re-
quired tasks like loop unrolling or procedure inline expan-
sion into trivial operations. Conditional and loop statements
in the input lead to a comparable block structuring of our
graphs, allowing efficient synthesis algorithms [Stok91].
Another combined data and control flow graph was devel-
oped in the SPRITE project, which seems more confined
towards signal processing applications, due to limited com-
munication functionality [Krol92].

3. The Data Flow Graph

3.1 The basic approach

The DFG consists of nodes and directed edges. The nodes
represent operations in the behavioural specification, and
the edges model the transfer of values between these. Thus a
single edge indicates that the result of one operation is
passed to the argument of another one. One single data value
instance is defined to be a token. We define the execution of
an operation (node) as the process where a token is fetched
and removed from the incoming edges, and a token contain-
ing the result of the operation is put on each outgoing edge.
The execution order of the operations in the graph is thus
constrained by the partial ordering of the nodes as defined by
the directed edges.

Every argument of an operation can be seen as an input
port of the operation, and the single result can be seen as the
output port of the operation. It is required for a DFG that
only one incoming edge is allowed to arrive on any input
port. However several outgoing edges can leave from the
output port. In general nodes can have several output ports,
each with zero or more outgoing edges. However in many
cases (commutative operations with one single output) there
is no reason to distinguish between individual ports on a
node, and hence ports are often left undefined.

In theory we will allow multiple tokens to be resident
(queued) on any edge, giving maximal freedom in schedul-
ing the execution of operations over time. However every-
body who wants to use (create) such a schedule is itself
responsible for synthesizing suitable hardware for these
queues. Due to the DFG properties, the finally resulting
values (tokens) do not depend upon the chosen execution
order, and it is always possible to choose a restricted order of
evaluation in which never more than one token is resident on
any edge [Jong91].

This token passing method, defines the algorithmic be-
havior of the graph, without imposing any restrictions on the
timing of the hardware to be generated. This was regarded a
very important property. By adding special ’timing’ edges to
the graph, constraints on the time behavior can be specified
if so desired. Furthermore the synthesis system is still free to
choose any clocking scheme.

To provide a more accurate definition of this execution
behavior, we will distinguish between a few different node
types.

3.2 Operation nodes

Operations can be arithmetic, like ×, –, +, ++, or boolean
like ∧ , ∨ , <, ≡, or can be more complex functions. The
available set of operations is not defined nor restricted by the
DFG format. However to successfully exchange designs
between sites, it is required to agree on the names of a few
basic operations, their allowed number of inputs, and –espe-
cially for non–commutative operations– on the names of
their input ports. The format also provides for nesting of
graphs in the same way as procedures in normal program-
ming languages. The instantiation of another graph is per-
formed by using a node type, referring to the name of a graph
defined elsewhere in the textual description. Despite this
node type, an instantiation distinguishes itself in no way
from a normal basic operation, and hence these can be re-
garded as instantiations of implicitly defined procedures.
The execution of an operation thus might involve the execu-
tion of a complex subgraph.

3.3 Input and Output nodes

Every graph requires at least one node of type input, and
one of type output. Nodes of type input are the only nodes
without input ports, and nodes of type output are the only
nodes without output ports. If the graph would be instan-
tiated elsewhere as operation, then the names of these input
and output nodes define the port names of the operation.

For more complex input/output communication the put
and get nodes should be used as defined later.

3.4 Constant nodes

Nodes of type ’constant’ are nodes which generate a con-
stant data value at their single output port. To indicate when
this token is to be produced, these nodes also have one input
port, and hence can be treated in the same way as unary
operators. Edges with the sole purpose to activate ’constant’
nodes are distinguished by giving them type ’source’, to
indicate that the data value of their tokens is actually ig-
nored. The usage of a constant node, together with a simple
operation and a pair of input/output nodes is depicted in
Figure 3.

3.5 Branch and Merge nodes

A branch node passes the token from the incoming data
edge to one output port, which is identified (selected) by the
value of the token on the control input. Thus the node can be
executed if both inputs have a token, and as result one token
will appear on precisely one output port.

Merge nodes are dual to branch nodes passing a token
from just one incoming data edge, selected by the value of
the token on the control edge, to the single output port. (The

196

Figure 3. Simple DFG with constant node.

in

+

3

out

data edgesource edge

x = x + 3;

execution rule of this node is different: it can execute as soon
as a token is available on the control input as well as on the
selected input port.)

The branch and merge nodes are necessary for algorith-
mic constructs like if ... then ... else, or case ... of. An
example of such a construct is shown in Figure 4.

Figure 4. DFG if–then–else example.

.

.
if (q)
then a++;
else b++;
.
.

BR

ME

0 1

0 1

BR

ME

0 1

0 1

a b q

++ ++

a b

3.6 Exit and Entry nodes

Exit and entry nodes are functionally identical to the
branch and merge nodes respectively. However these nodes
are used to build loop constructs, which could originate from
while ... do or for ... do statements. The connectivity of the
exit and entry nodes to create a loop construct is depicted in
Figure 5.

The loop construct introduces cycles in the DFG. This
are cycles through entry, exit and loop body, and cycles
through entry and loop test. These cycles are relatively easy
to find, due to the structure of the loop construct, and the
entry and exit nodes separate disjunct acyclic subgraphs
from the environment. Other cycles are not allowed in the
DFG. Note however that loop constructs can nest.

To allow a proper execution of these loops with the token
passing method, a special initialization is required: When
the execution of a graph is started, all entry nodes must

Figure 5. DFG while–do example.

.

.
while (q–– > 0)
{ x = x + 3;}
.
.

x q

EN
01

EN
01

>

– – 0

EX
01

EX
01

+

3

obtain a token at their control input, selecting the input port
for external data to enter the loop. The exit nodes do not
obtain such an initialization token! If the graph is repeatedly
executed for different sets of input tokens, the loop con-
structs must not be reinitialized for each input set: such
tokens are automatically left after each loop termination.

Although the token passing semantics would give the
impression of a sequential execution of the loop, this forms
in no way a restriction towards different implementations.
Note that the unrolling (unfolding) of a loop in the DFG is a
simple and straightforward operation. If the loop is to be
implemented sequentially, the token flow leaves maximum
flexibility with respect to synchronization and timing issues.
Of course clock cycle boundaries and state transitions must
be introduced to execute the loop, but there is a free choice
for the placement of this clock boundary: it does not have to
be at the entry nor at the exit nodes. It is even perfectly
allowed to desynchronize the loop cycling of different vari-
ables, for instance one variable might have completed 10
cycles, whereas another variable of the same loop has done
just 2 cycles. However such asynchronous execution re-
quires queueing of multiple tokens on (at least) the control
edges.

3.7 Get and Put nodes

Get and put nodes are to provide a mechanism for com-
munication protocols with the outside world and can appear
anywhere in the graph, such as inside ’if’ or ’loop’ con-
structs, in contrast to ’input’ and ’output’ nodes. These get
and put nodes make a reference to ’ports’ through which
external communication is to take place, which can for in-
stance model pads on the chip boundary.

Get and put nodes which use one physical port are linked
in sequential ’chains’ to set the order in which read and write
operations should appear on the port. When put and get
nodes appear within ’if’ or ’while’ constructs, there chain

197

edges also appear in these constructs, with their own
branch–merge or entry–exit node pairs. If put or get nodes
for one physical port appear both in a main graph and in
instantiated procedures, these edges should go through the
procedure call and body by hereto added input and output
ports on the procedure interface. The usage of put and get is
depicted in Figure 6.

Figure 6. DFG get and put example.

x = get();
if (x<0)
 x = get();
x++;
put(x);

BR

ME

01

01

++

in

get

0

out

put

<

BR

ME

01

01

get

chain edge

chain edge

3.8 Array operations

For operations on arrays three node types are provided:
The node type ’array’ functions as array declaration. The

declaration contains statements giving the dimensionality
and size(s) of the array. Optionally initial values are pro-
vided. The ’array’ node has outgoing chain edges, providing
linkage to the other two related node types: ’retrieve’ and
’update’.

The ’retrieve’ nodes are used to read data values from the
array. They have input ports for indices to address one value,
and a data output port.The ’update’ nodes are used to write
values in the array. They have edges providing indices as the
’retrieve’ nodes, and have a ’data’ input port for the value to
be written.

Chain edges are used to specify a (partial) ordering in
which the retrieve and update operations must take place.
Coming from a sequential input language, it seems natural to
connect all retrieve and update nodes in one serial list
(chain). However a careful analysis might reveal a degree of

parallelism (independence), allowing more freedom in
scheduling. For this purpose the chaining of retrieve and
update nodes is in general structured as a connected acyclic
graph. An example of array usage is given in Figure 7.

<

int A[10];
for (i=0; i<10;
 i++)
 A[i] = 0;

EX

EN

01

01

++

array 0

EX

EN

01

01

chain edge

chain edge

10

0�

upd 0data

Figure 7. DFG array example

4. Data types and widths

4.1 Introduction

In the DFG data transport is represented by edges. Hence
data types and data widths are (optional) properties of edges
in the graph. The data width (edge width) is the number of
bits that conceptually make up the data value and are in-
volved in the data transfer. In general this can be different
from the number of wires in the resulting hardware: The
mapping to hardware could generate things as dual rail or bit
serial transmission.

The data type determines the interpretation of the bit
pattern to a numeric value. This data type is of importance
for the selection of actual hardware modules performing the
arithmetic operations of the nodes. The mechanism of se-
lecting a hardware module depending on the data types of
the attached edges can be referred to as overloading. The
data type is furthermore required for the process of width
adjusting. This is required when the width of an edge does
not agree with the width of the port to which it connects.

4.2 Data type

A data type is attached to an edge with a data type name.
Such a data type name is introduced and defined with file
scope. This data type def statement is located outside any
graph, introduces the data type name, and optionally speci-
fies the numeric interpretation of the bit pattern. For now the
syntax allows to express two’s complement, unsigned, and
signed magnitude, binary coded integer and fixed point
numbers, as well as booleans.

198

Up to now no formats are defined to handle things like
floating point numbers, text, records, or attributes as ’ad-
dress of’, as well as counting schemes which differ from the
normally binary number representation such as bcd (binary
coded decimal) numbers. This means that for these unsup-
ported data types, you cannot express in the standard format
your semantics (interpretation) of these values at the bit
level. However omitting the data type interpretation, still
introduces the data type name. Hence you can use this name
to overload the operators, and do your intended synthesis.
However by just porting the DFG format, you cannot ex-
plain others the intended semantics. Although the type defi-
nitions have no direct support for record–like data struc-
tures, the bit operations do allow you to extract or insert
bitfields.

4.3 Numeric value versus bit pattern

Numeric values and bit patterns are semantically consid-
ered as two different domains, which are bridged by data
type definitions. Without data type definitions the DFG can
operate in the domain of numerical values. Constant values
can be specified in the form of decimal numbers. Numerical
operations as +, –, ×, ++, and ≤ or ≡ operate as mathematical-
ly expected. The behavior in this ’numerical value’ domain
corresponds to specifications like computer programming
languages. Even ’low level’ languages as C, do not define
the behavior at the bit–level, but leave this (on purpose)
machine dependent.

In the domain of bit patterns (bit vectors) the DFG can
correctly pass around bit vectors as data values (tokens).
Constants are specified in the form of strings of hexadecimal
or octal digits. Bit operations as &, |, ~, bit–merge are valid in
this domain.

Without the annotation with data types and data widths,
numerical operations have undefined semantics on bit pat-
terns (you cannot associate a value with them), and bit oper-
ations have undefined semantics on numerical values (you
don’t know the involved bit pattern). The addition of data
types and widths can be seen as the first hardware design
decisions. After adding them, numeric values are automati-
cally converted to bit patterns and vice versa, hence numeric
and bitwise operations can be freely intermixed. See
Figure 8.

� � � � � � � � � 	
 �
�
 � �

 × �� ≥ � ≤ ≡ ≠

� � � � � � � � � � � 	
 �
� � � � � � � �

 ≡ ≠

numeric domain bit pattern domain

data types
data widths

Figure 8. Numeric versus bit pattern domain

5. Textual Format

For an easy interface to various programming languages,
a text (ASCII) based format is used. This has the additional
advantage of easy transfer between different machines. The
Lisp and EDIF syntax style using a pair of braces for each
keyword ensures simple parsing: any LL–1 parser is strong
enough, such as a recursive descent parser scheme. It fur-
thermore allows for local and future extensions to the for-
mat, without disturbing already existing software (both up-
wards and downwards compatibility), and does not re-
quire a set of reserved words, forbidden as identifier.

The basic format is very simple: every statement forms a
list. Any list starts with an opening brace and a keyword on
which the application determines its interest in the list. The
items of the list are names, numbers and other lists, and the
list is terminated with a closing brace. If an application is not
interested in the information attached to the keyword –or
doesn’t recognize the keyword– it can skip this list, without
knowing anything about its (structured) contents, by just
counting braces. Hence every tool or site is free to add more
data for its own purpose. This property was considered high-
ly important.

An unrestricted style of identifiers (all printable charac-
ters, unrestricted length, no reserved words) is chosen to
simplify the translation of other languages into this format.

6. Timing

The format allows an accurate control over timing prop-
erties, such that scheduling algorithms can generate an effi -
cient design, allowing options like chaining and multi–cycl-
ing. This timing information originates conceptually from
two different sources:

The behavioural design specification will normally in-
clude timing restrictions such as minimum and maximum
allowable delays between (mainly input and output) opera-
tions, and ordering relations between these. This informa-
tion is represented in the format on additional timing edges.
Furthermore data on desired clock speeds can be repre-
sented.

The module library will provide information regarding
the operation nodes in the graph: real time delay of asynch-
ronous modules, and number of clock cycles for synchro-
nous modules together with leading and trailing real time
delay and allowed clock speeds. Furthermore ripple delays
can be specified, allowing a reasonable estimation of total
delay when stacking operation nodes like adders and array
multipliers.

7. Parameterization

The two main reasons for parameterization of the DFG
are:

199

• Actual parameter assignment at the nodes of a graph is
necessary to direct or control the generation of hardware
operators.

• It should be possible to define a graph which is parame-
terized for (at least) the width of its edges.
Parameter passing concepts can lead to an enormous

amount of extra syntax and constructs in a language. We felt
that the DFG as exchange format, in contrast to a user inter-
face language, would be better served with a syntactically
minimal but still general enough scheme. Due to the key-
word driven nature of the DFG format, extension remains
possible of course. These considerations based the follow-
ing choices:
• Nodes can have attached actual parameter assignments.

• Graphs can have formal parameter declarations. Togeth-
er with the parameter assignment at nodes, this allows
passing of parameters through a hierarchy of DFGs.

• All places where a number or identifier is allowed, also
allow an expression.

• Parameters do not have a data type nor a structure. This
greatly simplifies implementation. Whatever is assigned
to a parameter, is just inserted when the parameter is
used.

• Parameters are local to the graph where they are de-
clared. Their names are unique in each graph. Therefor
no scoping rules supporting concepts as name hiding
need to be implemented.

• Parameters cannot influence the connection structure of
a DFG. However they can change edge widths and edge
data types.

8. Support

The DFG exchange format is described in a document,
accurately defining the semantics, syntax, and context re-
strictions. Furthermore several tools are available to support
development of software interfaces to the format: A skeleton
parser and writer in two versions for the C and C++ imple-
mentation languages, a graph verification program which
performs numerous checks on the correctness of the graph
structure and type usage, and a graph drawing program with
output on both X window screens and postscript printers.

9. Conclusion

A data flow graph exchange standard is described, which
is used by several research organizations throughout Eu-
rope. It has a simple and intuitive token passing semantics,
suitable for both architectural synthesis and formal verifica-
tion.

Due to the braces oriented syntax, site dependent or
application dependent extensions are allowed without dis-
turbing other interfaces to the format, who do not know
about these. Because both architectural synthesis and formal
verification are still in the research phase this is an important

property, allowing future extension. The syntax furthermore
ensures simple parsing, and does not create a set of forbidden
words for identifiers.

The true global data flow analysis and merge of data and
control flow, lead to a maximal parallel design representa-
tion. As result, unsurpassed freedom for timing and alloca-
tion optimizations is obtained. The adopted data typing
method is general, extendible and concise.

Current activities concentrate on the inclusion of (partial)
synthesis results in the format, and a C++ programming
interface and data structure to be used by all synthesis tools.

10. References

[Brayton88] BRAYTON, R.K., R. CAMPOSANO, G. DE MICHELI,

R.H.J.M. OTTEN, AND J.T.J. VAN EIJNDHOVEN, ”The York-
town Silicon Compiler System,” in Silicon Compilation , ed.
D.D. Gajski, pp. 204–310, Addison–Wesley, 1988.

[Campos89] CAMPOSANO, R. AND W. ROSENSTIEL, ”Synthesiz-
ing Circuits from Behavioral Specifications,” IEEE Trans on
Computer–Aided Design, vol. 8, no. 2, pp. 171–180, February
1989.

[Hilfin84] HILFINGER, P.N., SILAGE: A Language for Signal Pro-
cessing, University of California, Berkeley, 1984.

[Jong91] JONG, G.G. DE, ”Data flow graphs: system specification
with the most unrestricted semantics”, in proc. of the European
Conf. on Design Automation (EDAC), Amsterdam, The Neth-
erlands, pp. 401–405, Feb. 1991.

[Knapp85] KNAPP, D.W. AND A.C. PARKER, ”A unified Repre-
sentation for Design Information,” in Proc. of the 7th Interna-
tional Symposium on Computer Hardware Description Lan-
guages and their Applications, Tokyo, August 1985.

[Krol92] KROL, TH., AND J. VAN MEERBERGEN, C. NIESSEN, W.

SMITS, J. HUISKEN ”The Sprite Input Language: An Inter-
mediate Format for High Level Synthesis” in proc. of the Euro-
pean Conf. on Design Automation (EDAC), Brussels, Bel-
gium, March 1992.

[Lis88] LIS, J.S. AND D.D. GAJSKI, ”Synthesis from VHDL,” in
Proc. of the IEEE International Conference on Computer De-
sign 1988 , pp. 378–381, 1988.

[Marwed85] MARWEDEL, P., ”The MIMOLA Design System: A
design System which spans several Levels,” in Methodologies
of Computer System Design , ed. B.D. Shriver, pp. 223–237,
North Holland, 1985.

[Pangrle87] PANGRLE, B.M., ”A Behavioural Compiler for Intelli-
gent Silicon Compilation,” Thesis, University of Illinois at
Urbana–Champaign, Urbana, Illinois, 1987.

[Paulin91] PAULIN, P.G. AND A. JERRAYA, ”SIF: an Interchange
Format for the Design and Synthesis of High–Level Control-
lers”, in Digest of the 5th High–Level synthesis Workshop,
Bühlerhöhe, Germany, march 1991.

[Stok91] STOK, L. Architectural Synthesis and Optimization of
Digital Systems, Thesis Eindhoven Univ. of Tech, Fac. Electri-
cal Engineering, Eindhoven, The Netherlands, pp 160, 1991

[Veen85] VEEN, A.H., The Misconstrued Semicolon: reconciling
imperative languages and dataflow machines. Thesis Eindho-
ven Univ. of Tech, Eindhoven, The Netherlands, 1985

[Walker87] WALKER, R.A. AND D.E. THOMAS, ”Design Repre-
sentation and Transformation in the System Architect’s Work-
bench”, in: Digest of Technical Papers of the Int. Conf. on
Computer Aided Design 1987, pp. 166–169, 1987.

