
Proc. 1st int. conf. on ASIC, Beijing, China,
W. YangYuan (Ed.), Oct. 18–21, 1994, pp. 75 – 78

CMOS cell generation for Logic Synthesis

dr.ir. J.T.J. van Eijndhoven
Eindhoven University of Technology

The Netherlands

J.T.J.v.Eijndhoven@ele.tue.nl

In commercial ASIC systems, fixed libraries of standard CMOS cells are much
more popular than programs which generate such cell layouts on the fly upon
demand. However, using cell generators designs can be mapped to fewer cells
due to the large choice, and with more timing freedom. This requires a cell
layout style with predictable timing performance, and logic synthesis with a
consistant timing model. The basic algorithm to derive the cell topology shows
two orders of magnitude improvement over originally published results.

1. Introduction
Generation of mask layout for static CMOS cells from a boolean specification has been done for many
years now, especially in research environments. However in commercial systems standard cell libraries
providing a limited choice of cells are most popular. With logic synthesis widely available in commercial
systems now, a cell generator can show remarkable advantages. This requires particular attention for cell
timing behavior and routing transparency, in combination with a consistent timing model in the logic
synthesis package. As result high performance circuits can be generated, with a reduced cell count and
fast and reliable timing.

2. Static CMOS cell style
Static CMOS cells have a general circuit topology as depicted in figure 1. Such a function is normally
specified as the inverse of a nested expression built from input identifiers, and symbols, or symbols, and
braces. The internal structure of the N– and P– networks is easily represented in a graph, with a node
representing a net, and an edge representing a transistor source–drain path. The edges are labelled with
the input identifier. The N– and P– graphs normally have dual topologies, such that each input identifier
occurs exactly once in both the N– and P– graph. In our approach these graphs are also series–parallel,
directly mirroring the recursive specification of the boolean function. The classical cell layout style is
used as depicted in figure 2, where source–drain regions are shared between neighboring transistors, and
the inputs vertically aligned for a compact cell layout [3]. A particular boolean function is realized by
interconnecting diffusion areas with horizontal wires for parallel transistors, and making connections to
output and power or ground.

p–network

n–network

in1
in2

in3
in4

out

power

ground

figure 1: general circuit topology figure 2: classic layout style

in1 in2 in3 in4

p–diffusion

n–diffusion

poly gate lines
⋅⋅
⋅⋅

3. Cell topology
The main problem in creating the cell topology is deciding the transistor (input identifier) order. A so
called dual Eulerpath has to be found in the dual series–parallel graphs of the network structure. If the
Eulerpath doesn’t exist, the graph edges should be covered with a set of disjoint paths. In this case the

resulting layout becomes wider due to separation between the different paths (transistor sequences),
horizontally placed next to each other. The problem is thus finding a dual graph coverage with a minimum
number of dual paths. For given series–parallel graphs this can be solved optimally in linear CPU time
[1]. However in general the resulting number of paths can be influenced by reordering of the graph, which
does not modify the boolean function. Thus the problem becomes finding a coverage in a minimum
number of dual paths over all possible graph orderings. Unfortunately this problem is NP–hard. However
Masiasz published an exact algorithm to solve this relatively efficiently [1]: his algorithm is only
worst–case exponential in the maximum degree found in the expression tree. The algorithm proceeds
bottom–up in the expression tree, cataloging for each node all possible externally different sub–graph
covers. The efficiency of the method is due to the fact that the maximum number of such covers in a single
node can never exceed 42, independent of the expression complexity.

We made an efficient implementation of this algorithm by a) not maintaining all possible detailed graph
coverages in each node, but merely the different achievable cover types. This computation on just cover
types proceeds upwards in the tree. At the tree root, the desired (minimum cardinality) cover is chosen,
after which the corresponding dual paths are determined in detail. The efficiency is furthermore improved
by b) deriving the different possible cover types only once for each different subexpression. For this
purpose the expression is not really stored as a tree, but as a directed acyclic graph with each node
representing a unique different (sub–)expression. As result we find a maximum CPU time of 0.09 seconds
for separate program runs to exactly solve the NP–hard problem for any individual cell among the 425803
different cells in the 5x5 family, whereas Masiasz reported a maximum of 90 seconds among the 3503
cells in the 4x4 family [2].

In contrast to Masiasz, our CPU time also includes an algorithm for the horizontal placement of the paths
of the chosen cover (their relative order and individual mirroring), to optimize the cell height: the number
of internal routing tracks required to implement the boolean cell functionality. For comparing absolute
CPU times one should note however that our experiments are done on a considerably faster HP 735/99
workstation.

4. Transistor sizing
To obtain a predictable cell delay which is in first approximation independent of the boolean input pattern
change, individual transistors in the cell are assigned different widths. The objective is to maintain a
certain output conductance. Such width assignment can be done in different ways, as is shown in figure
3. For layout reasons we prefer the solution which minimizes the maximum used width, the rightmost

3.03.03.0

1.5

figure 3: two different width assignments for unit conductance

2.04.04.0

2.0

solution. It is determined by a simple linear time algorithm: First bottom–up in the expression tree the
longest path in the N– sub–graph is denoted in each node as the sub–expression height. Secondly the
N–size is assigned top–down, initialized with the height at the root, passed down to the arguments
identical for and or multiplied with

� � � � � � � � � � 	 �
 � � � �
 � � � � � � � � � � �
 	 	 � � � � � � �

 for or. In the leaves of the

tree, the N–size is assigned as N–transistor width. Correspondingly the P–size is assigned. Two other
factors influence the final transistor sizes: First the p–transistors are always enlarged by a technology
dependent factor, to compensate for their reduced conductivity. Secondly all transistors of the cell are
scaled linearly with an individual cell ‘speed factor’, as discussed in the next section.

An example is shown in figure 4: The expressiontree is shown with o denoting an or, a denoting an and,
and x denoting a primary input. The two comma separated numbers left above each such letter, indicates
the size of the corresponding expression, which is calculated bottom–up in the tree, with x being 1,1 by
definition. So a pair p,q at the top of the tree denotes p as the maximum number of N–transistors in series,
and q such for the P–transistors. This pair of numbers is denoted as the ‘dimension’ of the cell. In general
the logic optimization and technology mapping target towards cells with a prescribed maximum
dimension: an AOI family. In a subsequent top–down phase the transistor sizes are derived as explained
above, and denoted as a pair of numbers left–under each tree node. The corresponding layout shows the
cell, simplified by removing well and well–contact features, and after input ordering. Note that each cell
uses polysilicon in vertical strips, metal–1 in horizontal strips, and metal–2 not at all. This leaves maximal
transparency for later over–the–cell routing and efficient area usage. Furthermore it allows changing the

o

a a

x x o x x

x x

1,2

3,2

3,3

2,1

3,1.5
1,1 1,1

1,1 1,1

1,1 1,1
3,1.5

3,3 3,3

2,3 2,33,3

2,33,3

3,3

figure 4: transistorsizing and ordering for a cell example

P–chain

N–chain

power

ground

ou
tp

ut

N–graph

P–graph

cells speedfactor, after an initial placement and routing phase: The cell are horizontally abutted with the
power lines, and can be adjusted for larger speedfactors by growing the transistors under the routing area.
Besides the huge choice in cell boolean functionality, the freedom to size each individual cell allows a
speed/power tradeoff of about a factor 3.

5. Timing issues
In commercial systems, fixed and well characterized cell libraries are preferred over automatic cell
generators. The main reason for that is the confidence in their delay and power figures. However with well
designed cells from generators and correspondingly adapted delay models in the logic synthesis package
the same kind of reliability can be achieved, with the added advantages of more compact design
realizations and simplified library maintenance [4]. The delay of a logic expression (cell) is modelled by
the formula:

Delay = Rint x (Cint + (Cwire + Cgates)/speedfactor))

Here speedfactor is a sizing parameter optionally assigned to individual cells, and is by default 1. Cint,
models internal cell capacitances such as from diffusion to bulk, and grows with the cell complexity. Cwire
is the wiring capacitance of the output net, which depends upon the placement and routing. Before
placement and routing is done, this is estimated from the cell fanout, the total estimated circuit size, and
averaged data gathered from previous designs. Cgates is the capacitive load of the fanout cells, which itself
depends upon the fanout cells complexity and their speedfactors. Finally Rint is the cell driving resistance,
which was made in principle independent of the cell type. Clearly all these R and C parameters also depend
upon the target technology.

The delay model is kept consistently along the different phases of logic design, from multi–level
optimization (creating a structured design from a two–level boolean specification, optimizing transistor
count under a delay constraint), technology mapping (inverter optimization, fanout tree insertion,
mapping boolean expressions to cells with prescribed maximum complexity), and cell sizing (globally
minimizing total active area by assigning a speedfactor to all cells while satisfying a delay constraint).
The cell sizing assigns a speedfactor from a prescribed interval (often 1–3, sometimes 0.5–5) to each
individual cell, by means of Linear Programming, creating a globally optimal solution [5]. The LP method
works fine for circuits up to several thousand cells, beyond which the numerical stability (not the CPU
time) becomes problematic.

Already in the stage of logic optimization (before technology mapping) the delay estimates are accurate
within 10%, compared with final figures from extracted layout, see figure 5. For final refinement and

0

10

20

30

40

50

1 2 3 4 5

5 different realizations of one circuit

multilevel logic optimization
technology mapping
after layout extraction

delay estimates (ns) in the following stages:

figure 5: delay estimates are in 10% accuracy

optimization of the delay, the system allows to use extracted net capacitances from the layout to be used

for a final (re–)sizing of the cells, in stead of the roughly estimated net capacitances from before
placement and routing were done. The cells are then regenerated, and placed at their original positions.
This is possible due to the layout style, where cells with different heights are placed in rows, a multi layer
maze router is used allowing over the cell routing, and the cells are designed to be highly transparent for
routing. As result the sizing can give a speedup of the total circuit of a factor 1.5 to 3, without really
increasing the total layout area. Sizing for larger speedups tends to require excessive power.

As result compact blocks of cells are obtained, with a size ranging upto on the order of 10K cells, at first
sight looking like standard cell layout. These blocks are subsequently placed and routed in a
floorplanning/channelrout system. A small caption of a generated layout is shown in figure 6. Mapping
towards more complex cells, allowing cells upto 4x4 or even 5x5 complexity, tends to increase the delay
but can reduce both power and area.

6. Conclusion
A static CMOS cell generator has been made, with a fast implementation of a powerful algorithm. The
cells are designed with circuit timing issues in mind, and made highly transparent to allow over the cell
routing. In combination with a logic optimization system with a consistent delay model, high performance
circuits are reliably designed.

figure 6: layout caption with cells and routing

7. References
[1] R.L. MASIASZ, J.P. HAYES, Layout Optimization of static CMOS Functional Cells, IEEE trans. on Comp. Aided

Design, Vol. 9, No. 7, pp. 708–719, July 1990.
[2] R.L. MASIASZ, J.P. HAYES, Layout Minimization of CMOS Cells, Kluwer Ac. Publ., 1992
[3] T. UEHARA, W.M. VAN CLEEMPUT, Optimal Layout of CMOS Functional Arrays, IEEE Trans. on Computers,

Vol. C–30, No. 5, pp. 305–311, May 1981.
[4] M.R.C.M. BERKELAAR, J.F.M. THEEUWEN, Logic Synthesis with Emphasis on Area–Power–Delay Trade–Off,

J. of Semicustom ICs, pp. 37–42, Sept. 1991
[5] M.R.C.M. BERKELAAR, J.A.G. JESS, Gate sizing in MOS Digital Circuits with Linear Programming, Proc.

European Design Aut. Conf. (EDAC), pp. 217–221, Sept. 1990

