Proc. 1st int. conf. on ASIC, Beijing, China,
W. YangYuan (Ed.), Oct. 18-21, 1994, pp. 75-78

CMOQOS cell generation for Logic Synthesis

dr.ir. J.T.J. van Eijndhoven
Eindhoven University of Technology
The Netherlands

J.T.J.v.Eijndhoven@ele.tue.nl

Incommercia ASIC systems, fixed librariesof standard CMOScellsaremuch
more popular than programswhich generate such cell layouts on the fly upon
demand. However, using cell generators designs can be mapped to fewer cells
due to the large choice, and with more timing freedom. This requires a cell
layout style with predictable timing performance, and logic synthesis with a
consistant timing model. The basic algorithm to derivethecell topol ogy shows
two orders of magnitude improvement over originally published results.

1. Introduction

Generation of mask layout for static CMOS cells from a boolean specification has been done for many
years now, especialy in research environments. However in commercia systems standard cell libraries
providing alimited choice of cellsare most popular. With logic synthesiswidely availablein commercial
systemsnow, acell generator can show remarkable advantages. Thisrequires particular attention for cell
timing behavior and routing transparency, in combination with a consistent timing model in the logic
synthesis package. Asresult high performance circuits can be generated, with areduced cell count and
fast and reliable timing.

2. Static CMOS cell style

Static CMOS cells have a general circuit topology as depicted in figure 1. Such a function is normally
specified astheinverse of anested expression built from input identifiers, and symbols, or symbols, and
braces. The internal structure of the N— and P— networks is easily represented in a graph, with a node
representing a net, and an edge representing atransistor source—drain path. The edges are labelled with
theinput identifier. The N—and P—graphs normally have dual topologies, such that each input identifier
occurs exactly once in both the N—and P— graph. In our approach these graphs are also series—paralle,
directly mirroring the recursive specification of the boolean function. The classical cell layout styleis
used as depicted in figure 2, where source—drain regions are shared between neighboring transistors, and
the inputs vertically aligned for a compact cell layout [3]. A particular boolean function is realized by
interconnecting diffusion areas with horizontal wiresfor paralel transistors, and making connectionsto
output and power or ground.

I
POWer inl in2 in3 in4
p—network
. —
!nl % p—diffusion
in2
——— out
fn3 -
" — n—diffusion
n—network ;
x ground poly gate lines
figure 1: general circuit topology figure 2: classic layout style

3. Cell topology

The main problem in creating the cell topology is deciding the transistor (input identifier) order. A so
called dual Eulerpath has to be found in the dual series—parallel graphs of the network structure. If the
Eulerpath doesn’t exist, the graph edges should be covered with a set of dijoint paths. In this case the

resulting layout becomes wider due to separation between the different paths (transistor sequences),
horizontally placed next to each other. The problemisthusfinding adual graph coveragewithaminimum
number of dual paths. For given series—parallel graphs this can be solved optimally in linear CPU time
[1]. However in general theresulting number of paths can beinfluenced by reordering of the graph, which
does not modify the boolean function. Thus the problem becomes finding a coverage in a minimum
number of dual pathsover all possible graph orderings. Unfortunately this problemisNP-hard. However
Masiasz published an exact agorithm to solve this relatively efficiently [1]: his algorithm is only
worst—case exponential in the maximum degree found in the expression tree. The agorithm proceeds
bottom—up in the expression tree, cataloging for each node all possible externally different sub—graph
covers. Theefficiency of the method isdueto thefact that the maximum number of such coversinasingle
node can never exceed 42, independent of the expression compl exity.

We made an efficient implementation of this algorithm by a) not maintaining all possible detailed graph
coveragesin each node, but merely the different achievable cover types. This computation on just cover
types proceeds upwardsin the tree. At the tree root, the desired (minimum cardinality) cover is chosen,
after whichthe corresponding dual pathsare determinedindetail. Theefficiency isfurthermoreimproved
by b) deriving the different possible cover types only once for each different subexpression. For this
purpose the expression is not really stored as a tree, but as a directed acyclic graph with each node
representing auniquedifferent (sub—)expression. Asresult wefind amaximum CPU timeof 0.09 seconds
for separate program runsto exactly solvethe NP-hard problem for any individual cell among the 425803
different cellsin the 5x5 family, whereas Masiasz reported a maximum of 90 seconds among the 3503
cellsin the 4x4 family [2].

In contrast to Masiasz, our CPU time al so includes an algorithm for the horizontal placement of the paths
of the chosen cover (their relative order and individual mirroring), to optimizethe cell height: the number
of internal routing tracks required to implement the boolean cell functionality. For comparing absolute
CPU times one should note however that our experiments are done on a considerably faster HP 735/99
workstation.

4. Transistor sizing

To obtain apredictablecell delay whichisinfirst approximation independent of the boolean input pattern

change, individual transistors in the cell are assigned different widths. The objective is to maintain a

certain output conductance. Such width assignment can be done in different ways, asis shown in figure

3. For layout reasons we prefer the solution which minimizes the maximum used width, the rightmost
15

40 40 20 3.0 3.0 30
figure 3: two different width assignments for unit conductance

solution. It is determined by a ssmple linear time algorithm: First bottom—up in the expression tree the
longest path in the N— sub—graph is denoted in each node as the sub—expression height. Secondly the
N-size is assigned top—down, initialized with the height at the root, passed down to the arguments
identical for and or multiplied with (height of argument)/(height of current node) for or. In the leaves of the
tree, the N—-size is assigned as N-transistor width. Correspondingly the P—size is assigned. Two other
factors influence the final transistor sizes: First the p-transistors are always enlarged by a technology
dependent factor, to compensate for their reduced conductivity. Secondly al transistors of the cell are
scaled linearly with an individual cell ‘ speed factor’, as discussed in the next section.

An exampleisshown in figure 4: The expressiontree is shown with o dencting an or, a denoting an and,
and x denoting a primary input. The two comma separated numbers | eft above each such letter, indicates
the size of the corresponding expression, which is calculated bottom—up in the tree, with x being 1,1 by
definition. Soapair p,q at thetop of the tree denotes p as the maximum number of N—transistorsin series,
and g such for the P-transistors. This pair of numbersisdenoted asthe‘dimension’ of thecell. In general
the logic optimization and technology mapping target towards cells with a prescribed maximum
dimension: an AOI family. In a subsequent top—down phase the transistor sizes are derived as explained
above, and denoted as apair of numbers |left—under each tree node. The corresponding layout shows the
cell, simplified by removing well and well—contact features, and after input ordering. Note that each cell
usespolysiliconinvertical strips, metal—1 in horizontal strips, and metal—2 not at all. Thisleavesmaximal
transparency for later over—the—cell routing and efficient areausage. Furthermoreit allows changing the

33 5
3,3 =
>
32 S X P—graph g P—chain
a a =
N, LN)
11,711, 12, 11, 11
315X 315% 33 0\2,3 X 53X
11/ 1 power
33X 33X
: : ground
N-graph
N—chain

figure 4: transistorsizing and ordering for a cell example

cells speedfactor, after aninitial placement and routing phase: The cell are horizontally abutted with the
power lines, and can be adjusted for larger speedfactors by growing thetransi stors under therouting area.
Besides the huge choice in cell boolean functionality, the freedom to size each individual cell allows a
speed/power tradeoff of about afactor 3.

5. Timing issues

In commercial systems, fixed and well characterized cell libraries are preferred over automatic cell
generators. Themain reasonfor that isthe confidencein their delay and power figures. However withwell
designed cellsfrom generators and correspondingly adapted delay modelsin thelogic synthesis package
the same kind of reliability can be achieved, with the added advantages of more compact design
realizationsand simplified library maintenance [4]. The delay of alogic expression (cell) ismodelled by
the formula:

Delay = Rnt X (Gint + (Cuire + Cgates)/Speedfactor))

Here speedfactor is a sizing parameter optionally assigned to individual cells, and is by default 1. Gy,
modelsinternal cell capacitancessuch asfromdiffusionto bulk, and growswith thecell complexity. Cyire
is the wiring capacitance of the output net, which depends upon the placement and routing. Before
placement and routing is done, thisis estimated from the cell fanout, the total estimated circuit size, and
averaged datagathered from previousdesigns. Cyares isthe capacitiveload of thefanout cells, whichitsel f
dependsupon thefanout cellscomplexity and their speedfactors. Finally R isthe cell driving resistance,
whichwasmadein principleindependent of thecell type. Clearly all theseRand C parametersal sodepend
upon the target technology.

The delay model is kept consistently along the different phases of logic design, from multi-evel
optimization (creating a structured design from atwo-evel boolean specification, optimizing transistor
count under a delay constraint), technology mapping (inverter optimization, fanout tree insertion,
mapping boolean expressions to cells with prescribed maximum complexity), and cell sizing (globally
minimizing total active area by assigning a speedfactor to all cells while satisfying a delay constraint).
The cell sizing assigns a speedfactor from a prescribed interval (often 1-3, sometimes 0.5-5) to each
individual cell, by meansof Linear Programming, creating aglobally optimal solution[5]. TheLPmethod
works fine for circuits up to several thousand cells, beyond which the numerical stability (not the CPU
time) becomes problematic.

Already in the stage of logic optimization (before technology mapping) the delay estimates are accurate
within 10%, compared with final figures from extracted layout, see figure 5. For final refinement and

50
5 different realizations of one circuit 40
delay estimates (ns) in the following stages: 30
= multilevel logic optimization
m technology mapping 20
mm after layout extraction 10
figure 5: delay estimates are in 10% accuracy 0 1 2 3 4 5

optimization of the delay, the system allowsto use extracted net capacitances from the layout to be used

for a fina (re-)sizing of the cells, in stead of the roughly estimated net capacitances from before
placement and routing were done. The cells are then regenerated, and placed at their original positions.
Thisispossibledueto thelayout style, where cellswith different heightsare placed in rows, amulti layer
maze router is used alowing over the cell routing, and the cells are designed to be highly transparent for
routing. As result the sizing can give a speedup of the total circuit of afactor 1.5 to 3, without really
increasing the total layout area. Sizing for larger speedups tends to require excessive power.

Asresult compact blocks of cellsare obtained, with asize ranging upto on the order of 10K cells, at first
sight looking like standard cell layout. These blocks are subsequently placed and routed in a
floorplanning/channelrout system. A small caption of agenerated layout is shown in figure 6. Mapping
towards more complex cells, allowing cells upto 4x4 or even 5x5 complexity, tendsto increase the delay
but can reduce both power and area.

6. Conclusion

A static CMOS cell generator has been made, with a fast implementation of a powerful agorithm. The
cells are designed with circuit timing issues in mind, and made highly transparent to allow over the cell
routing. In combination with alogic optimization system with aconsistent delay model, high performance
circuits are reliably designed.

[=] [= = = (=]
H=N= = - -om

L w awomiia’iiia

L] = L]

=
figure 6: layout caption with cells and routing

7. References

[1] RL.Masiasz, JP. HAYEs, Layout Optimization of static CMOS Functional Cells, |EEE trans. on Comp. Aided
Design, Vol. 9, No. 7, pp. 708-719, July 1990.

[2] RL.Masiasz, JP. HAYES, Layout Minimization of CMOS Cells, Kluwer Ac. Publ., 1992

[3] T.UeHARA, WM. vaN CLEEMPUT, Optimal Layout of CMOS Functional Arrays, |EEE Trans. on Computers,
Vol. C-30, No. 5, pp. 305-311, May 1981.

[4] M.R.CM.BERKELAAR, JFEM. THEEUWEN, Logic Synthesis with Emphasis on Area—Power—Delay Trade-Off,
J. of Semicustom ICs, pp. 3742, Sept. 1991

[5] M.RCM. BERKELAAR, JA.G. JEss, Gate sizing in MOS Digital Circuits with Linear Programming, Proc.
European Design Aut. Conf. (EDAC), pp. 217-221, Sept. 1990

