A Constructive Method for Exploiting Code Motion

Luiz C. V. dos Santost, M.J.M. Heijligers, C.A.J. van Eijk, J.T.J. van Eijndhoven and JA.G. Jess
Design Automation Section, Eindhoven University of Technology
P.O.Box 513, 5600 MB Eindhoven, The Netherlands

Abstract

In this paper we address a resource—constrained optimiza-
tion problem for behavioral descriptions containing
conditionals. In high-evel synthesis of ASCs or in code
generation for ASPs, most methods use greedy choices in
such a way that the search space is limited by the applied
heuristics. For example, they might miss opportunities to
optimize across basic block boundaries when treating
conditional execution. We propose an approach based on
local search and present a constructive method to allow
unrestricted types of code motion, while keeping optimal
solutions in the search space. A code-motion pruning
techniqueispresented for cost functionsoptimizing schedule
lengths. A technique for treating concurrent flows of
execution is also described.

1. Introduction

In the high-evel synthesis of an application—specific
integrated circuit (ASIC) or in the code generation for an
application—specific instruction set processor (ASIP), four
maindifficultieshaveto befaced when conditionalsarepres-
ent in the behavioral description:

a) theNP—completenessof theresource—constrained sched-
uling problem itself.

b) the limited parallelism of operations enclosed by basic
blocks, asthey might not useall availableresourcescom-
pletely.

c) thepossibility of state explosion because the number of
paths may explode in the presence of conditionals.

d) thepossibility of state expansion dueto limited resource
sharing of mutually exclusive operations (whichislim-
ited by the timely availability of test results).

M ost methodsapply different heuristicsfor each subprob-
lem (BB scheduling, code motion, code size reduction) asif
they were independent. An heuristic is used to decide the
order of the operationsduring scheduling (likethemany fla-
vorsof priority lists), another to decide whether a particular
code motion isworth doing [6, 17], yet another for areduc-
tion on the number of states [18]. As a result, these
approaches might miss optimal solutions.

We propose a formulation to encode potential solutions
for the interdependent subproblems. We show that optimal
solutions are kept in the search space. The formulation
abstracts from the linear—time model and allows us to con-
centrate on the order of operations and availability of
resources. Figure 1 shows the outline of our approach. We

1. On leave from INE, Fed. Univ. of Santa Catarina, Brazil. Partially
supported by CNPg (Brazil) under fellowship award n. 200283/94—-4.

have a solution explorer which is based on a local search
algorithm[15]. The constructor isdriven by apermutation 17
of theoperationsinthedataflow graph. Theexplorer handles
encoded solutionsand usesasol ution constructor to evaluate
their cost. A code-motion pruning is embedded in the
constructor to reduce the search space.

explorer

1 cost

| constructor |
Figure 1 — An outline of the approach

The main contributions of our approach are:

a) A method to encode BB scheduling and code motion as
an unified problem such that unrestricted code motions
can be induced;

b) A code-motion pruning technique which preserves opti-
mal solutionsin the search space;

¢) A technique for treating concurrent flows of execution
when asingle flow of control is targeted.

2. The Problem

Definition 1: A control data flow graph DFG = (U, E) is
adirected graph wherethenodesrepresent operationsandthe
edges represent the dependencies between them. We assume
that the DFG contains conditional constructs.

Definition 2: An execution condition is associated with
every operation, represented as a boolean function, here
called a predicate. An execution instance (EXI) is a set of
operations executed under a given predicate.

Definition 3: A basic block (BB) is a set of operations
which all have the same execution condition.

Definition 4: A basic block control flow graph BBCG =
(V, F) is adirected graph where the nodes represent basic
blocks and the edges represent the flow of control. Weallow
that an operation initially associated with a given BB be
"moved” to another BB; thisis called code motion.

Definition 5: Each traversal in the BBCG from an input
node to an output node such that only BBs which execute
under a same predicate are visited defines a path. A path
defines asequence of BBswhich enclose al the operations
belonging to an EX| of the DFG. Each pathinthe BBCG cor-
responds to exactly one EXI in the DFG.

Optimization problem (OP): Given a number K of func-
tional unitsand an acyclic DFG, find acontrol sequence rep-
resented by a state machine graph, in which precedence
congtraints of the DFG are obeyed and the resource
constraints are satisfied for each functional unit type, such
that a cost function C is minimized.

Our motivation to address this resource—constrained
problem is due to the increasing interest to find the balance
between architectural synthesis and code generation tech-
niques (e.g. application—-domain ASIPs).

General instancesof the OP: Themethod presentedinthis
paper addresses instances of the OP for arbitrary cost func-
tions which can be extended to include not only schedule
length, but also issues like register and interconnect usage,
and number of states. This is convenient especially in late
phases of adesign flow, where optimization hasto take sev-
era design issues into account.

Particular instancesof the OP: In early phasesof adesign
flow, the optimization objectives are dictated by the real—
time requirements of embedded systemsdesign. Theslowest
possible execution time of a piece of code must meet real—
time constraints[4]. At the other hand, asthese early phases
tend to be iterated severa times, runtime efficiency is
imperative. For these reasons we propose a pruning tech-
niquetotackleinstancesof the OPfor whichthecost function

canbewrittenas C = f(T,, Ty, ..., T,) , where T, isthesched-
ule length of theith path in the BBCG and f isamonotoni-
cally increasing function. This pruning guarantees the pres-
ence of optimal solutions in the search space in terms of
schedule lengths (see [8] and proof in Appendix A).

3. Related Work

In path—based scheduling (PBS) [3, 2] a so—called as—
fast—as—possible (AFAP) schedule is found for each path
independently, provided that a fixed order of operations be
choseninadvance. Dueto thefixed order and to thefact that
schedulingiscast asacliquecovering problemonaninterval
graph, code motions resulting in speculative execution are
not alowed. Thus, the method has limited capability of
exploiting parallelism with complex control flow [13]. This
limitation is released in tree-based scheduling (TBS) [10],
by allowing boosting and duplication code motions.

Conditionvector list scheduling (CVLS) [18] alowscode
motion and supports speculative execution. However, the
underlying mutual exclusion representation is limited [1].

In Trace-scheduling (TS) [6] amain path (trace) ischosen
to be scheduled first and independently of other paths, then
another traceis chosen and scheduled, and so on. TSdoesn’t
allow certain types of code motion across the main trace.

In[17] an approach is presented where code-motionsare
exploited. BBsare scheduled using alist scheduler and then
codemationsareallowed. Onepriority functionisusedinthe
BB scheduler and another for code motion. Code motion is
allowed only inside windows containing afew BBs to keep
runtimelow, but then iterative improvement is needed not to
restrict too much the kind of code motions allowed.

Among those methods, only PBSisexact, but it solvesa
partial problem where specul ative execution is not allowed.
TBS and CVLS address BB scheduling and code motions
simultaneously, but useclassical list scheduler heuristics. TS
combines both subproblems in a per trace basis, but main—
trace—first heuristicsare applied. In [17] adifferent heuristic
is applied to each subproblem. All those methods may
exclude optimal solutions from the search space.

In [16], an exact symboalic technique for control depen-
dent scheduling is presented. However, restrictions are
imposed on the speculative execution model. Besides, the
use of an exact method in early (more iterative) phases of a
designisunlikely, especially becauseno pruningispresented
to cope with the larger search space due to code motions.

A method could be envisaged where no restriction is
imposed neither on the kind of code motion, nor on the order
the operations are taken to be schedul ed.

4 The method
4.1. Outline of the method

Thesolution constructor takesapermutation of the opera-
tions and generates a solution. Techniques borrowed from
the constructive topologica sorted scheduler [8] are used,
becauseit hastheimportant property that therealwaysexists
apermutation which resultsinan optimal solution. A sched-
ule is constructed out of the permutation as follows. An
operationto beschedul ed issel ected among ready operations
(unscheduled operations whose predecessors are al sched-
uled) following the order in the permutation. Each selected
operation is attempted to be scheduled at the as early as pos-
sible time where afree resource is available.

ule

%)
5}
1
)
£

]
(=
]
L]
(=
]
]

Ci

(b) [f]]

scheduling evolution

Figure 2 — Using the topological sorted scheduler

In figure 2, a linear—time sequence is constructed for a
given permutation. See [5] for an explanation of the symbols
used. Thetopological sorted scheduler isapplied on purpose
in a very straightforward way (figure 2b). No information
about mutual exclusion is used. When such information is
used, b can be scheduled at the second step by sharing an
adder with operation ¢ (figure 2c). Weare assuming that the
outcomeof tisnot availableinsidethefirst steptoallowaand
b to conditionally share aresource. The resulting schedule
length is reduced to 5 steps for both EXIs, even though the
EXI (t, b, g) could be scheduled onitsowninonly two steps.
Information about mutual exclusion is clearly not enough
and thelimitation isthe linear—time model. To allow amore
efficient solution, some mechanism has to split the linear—
timesequenceby exposing aflow of control. Our mechanism
isbased oninitial links, aswewill explain inthenext subsec-
tions.

4.2. Initial links

In our method we want to capture the freedom for code
motions without restrictions and for this purpose we
introduce the nation of alink. A link connects an operation
uinthe DFG withaBB vinthe BBCG. Itsinterpretation is
that umay beexecuted under the predicatewhich definesthe
execution of operationsinv. A same operation can belinked
to several mutually exclusive BBs. Figure 3 illustrates the
link concept. A mergenode (M) representsdata selectionand
abranch node (B) represents control selection.

V v
Figure 3 — Paths and execution instances

Initial links: Wewill encode the freedom for code motion
by usingaset of initial links. First, welook for each operation
whoseresult hasto beavailablebeforeacontrol or datasel ec-
tion point in a given EXI. Such an operation is said to be a
terminal. Each terminal islinked to the BB which precedes
the corresponding selection point in the BBCG. In figure 3,
initial links are shown for terminals c and d (due to data
selection) and t (dueto control selection).Then, welink each
ancestor of aterminal to the same BB to which the latter is
linked. Operationaisnot aterminal andwill haveinitial links
(not shown in figure) to both BB2 and BB3; b will have a
singleinitial link pointingto BB3. Each link pointstothelat-
est BB inagiven path wherethe respective operation can stil|
be executed. This means that each operation is free to be
executed inside any preceding BB on the same path as soon
as data precedence and resource constraints allow (the only
control dependency to be satisfied isthe need to execute the
operation at the latest inside the BB pointed by the initial
link). TheunderlyingideaistotraversetheBBCG intopol og-
ical order trying to schedule operationsin traversed BBs. If
operation uisgiven aninitial link to BB v and v is reached
in the traversal, then u must be scheduled inside it. We say
that the assignment of uto BB v is compulsory .

Figure 4 — Linking unconditional operations

Final assignments. Each link a will be caled here an
operation assignment (from now on called simply assign-
ment) when it obeys precedence constraints and it doesn’t
imply the need for more than the available functional units.
Assignmentswhich might increaseregistersand/or intercon-
nect usage areincluded in the search space. Each assignment

from an operation uinto aBB visgiven thefollowing attrib-
utes: a) condition (execution condition of u when its predi-
cate is completely evaluated); b) begin (operation starting
time of uin BB V); c) end (completion time of uin BB v).
Assignments represent a relative—time encoding. The abso-
lutetimeisgiven by theinstant BB v startsexecution plusthe
valuein attribute begin.

Freedom for code motion: Operations may be redundant
for some paths in abehavioral description [10]. TBS uses
tree optimization to remove redundancies by propagating
each operation to the latest BB whereit isto beused. CVLS
eliminates them by using extended condition vectors [18].
Eventhough they removeredundancies, thosemethodsdon’t
succeed to encode the freedom for code motion. Tree opti-
mization workswell for (nested) conditional trees, butinthe
case of parallel flows of execution, the quality of a solution
may depend on the description. In figure 4, after tree opti-
mization, the unconditional operation f would remain
associated to the BB wherein it was originally described.

Merging concurrent flows of execution: Our initial links
do not only handle redundancies, but also encode freedom
for code motion. In figure 4, f may belinked to BB4, to both
BB3andBB2ortoBBL1. a;istheinitial link, becausetheonly
control dependency to be satisfied isthat f execute before the
output isavailable. Asoperation f can be executedin BB1 or
inany preceding BB assoon asresourceand datadependency
constraints are satisfied, unrestricted code motions can be
exploited, even for concurrent flows of execution.

4.3. The solution constructor

Traversing intopological order: The solution constructor
followstheflow of tokensinthe DFG whilethe BBCGistra-
versed in topological order. An operation can be assigned to
any traversed BB, assoon as data precedence and resource
constraints allow. If more than one operation satisfies these
constraints, an operation will be chosen based ontheorder in
the permutation. Such an assignment is not compulsory as
long asthe BB to which the operation wasinitially linked is
not reached. Asaresult, aninitial link u—v might become
afinal assignment, but it will be revoked if u succeedsto be
scheduled inside any ancestor of v, inducing a code mation.

Splitting the linear—time sequence: Only when an opera-
tion iscompulsory in aBB, it is allowed to "allocate” extra
time stepsinside that BB. Thiswill make room for schedul-
ing non—compulsory operationsin idle resources. We claim
that the underlying pruning associated with this criterion to
split the linear-time sequence doesn’t discard any better
solutions (see section 2 and proof in Appendix A).

Example: In figure 5 the same example asin figure 2 is
scheduled to illustrate the method. It is shown in figure 5b
how each EX|I could be scheduled independently. EXI11 ={t,
a ¢, ed,f, g} isscheduledinfive stepsand EX12 ={t, b, g}
is scheduled in 2 steps. It is not possible to overlap those
seguences, because a and b cannot share the adder (the out-
come of testtis not available inside the first step). Even
though each path can be AFAP scheduled for the given 11,
there is a conflict between them so that if one sequence is
chosen, the other will be imposed an extra step. Figure 5¢
shows the initial links. Figures 5d to 5k show the evolution

(k)

Figure 5—Splitting the linear—time sequence

for each operationin I1. Circlesin bold mark the current BB
being traversed. Note in figure 5d that, even though other
ready operations(a, eand b) precedet in 11, tisthe schedul ed
onebecauseitistheonly compulsory operationinthecurrent
BB. Then a is scheduled (figure 5€) in the same step, as an
idle adder exists. At that point no other ready operations can
be scheduled in that BB, asthey would requirethe allocation
of extra steps. Then, another BB is taken (figure 5f) and so
on. Figure 5k showsthefinal result. It isthe same asobtained
by scheduling EX| Lindependently (figure5b), but EX12was
imposed an extra step. Note that if a and b were exchanged
in 11, the solution in 5b for EX12 would be obtained, while
EXI1 would be imposed an extra step. When a conflict hap-
pens between paths, the method solves it in a certain way
induced by 17, but there existsanother permutation 77 which
induces a solution in the opposite way (no limitation in
search space). Note that the assignment of operationsa or b
to thefirst step represents specul ative execution. If wedon't
allow speculative execution both EXIs will be imposed an
extra step, resulting in schedule lengths of 3 and 6.

Notion of order dominant over notion of time step: As
opposed to other approaches [18, 12], this method doesn’t
usetimeasaprimary issueto decide on the position an opera-
tionwill be assigned to. Instead, anotion of order and avail-
ability of resourcesin control flow is used. As assignments
incorporate a relative-time encoding, time is only used to
manage resource utilization inside BBs. Our approach
doesn’'t enumerate exhaustively combinations of time steps
to schedule an operation, which exempts the use of greedy
choicesto decide on the position of an operation in different
paths [12] and to control the number of states[18].

The solution constructor issummarized in algorithm 1. 1
isapermutation, C isthe set of BBs, uisan operation, v is
aBB, aisan assignment and o(a) isareal number. Function

maxTop(C) returns BBs in a arbitrary topological order. A
candidate assignment « is created for each pair (u,v) and the
condition unscheduled(a)A scheduledpreds(a) IS evaluated. If
thiscondition holds, the earliest stepinvwith afreeresource
(o(@) will be found. Function isSuitable(a,o(c)) decides
whether « should be committed or revoked. When all com-
pulsory operations are scheduled and there is no room for
scheduling others, anew BB istaken.

construct_solution(C,IT)
while C = 0
v := maxTop(C);

while j <|T1]
u:=TI[j++];
o= assignment(u,v);
if (unscheduled(a) A scheduledpreds(a));
then o(a):=asap(a);
o(a):=satisfyResConstraints(a, o(a));
if isSuitable(a, o(a))
then annotate(a, o(a));
§9Ic\)/_eCodeMotion((x);
update(C); P
Algorithm 1 — The solution constructor
Runtime compl exity: Let n bethe number of operationsin
IT, bthenumber of BBs, pthenumber of pathsand cthenum-
ber of conditionals. The search for the first ready operation
in IT takes O(lg n). As this search may be repeated for each
operation and for each BB, the worst case complexity of
algorithm 1 is O(b n Ig n). The runtime efficiency of our
approach doesn’t depend on p (which can grow exponen-
tially in c), as opposed to path—based methods.

4.4, Exploiting unrestricted code motions

I nthissectionwesummarizetherel ationship betweenini-
tial links, assignmentsand code motions. A detailed analysis
of code motions can be found in [17].

Figure 6 — Basic code motions

Basic code motions: Figure 6 illustrates code motionsin
the scope of asingle conditional : duplication—up (@), boost-
ing—up (b), unification (c) and useful (d). a;representsafinal
assignmentand «; aninitial link. A circlein bold represents
the current BB being traversed. Once «a; succeeds, the cov-
ered a;'sarerevoked. Even though only upward motionsare
explicitly shown, downward motions are implicitly sup-
ported, astheinitial links encode the maximum freedom for
code motions downwards.

Figure 7 — Generalized code motions

Generalized code motions: Figure 7 shows generalized
code motions supported in our approach. Arrows indicate
possible upward motions from an origin BB to adestination
BB. Gray circlesillustrate more local code motions, which
are handled by most methods. Either they correspond to the
basic code mations of figure 6 or to a few combinations of
them. In [17] these combinations are attempted viaiterative
improvement inside windows containing a few BBs. Black
circlesillustrate more global code motions also supportedin
our method. Note that such ” compound” motions are deter-
mined at once by the permutation and are not the result of
successive application of basic code motions. We do not
search for the best code motions inside a solution, we do
search for the best solution whose underlying code motions
induce the best overall cost.

Impact of code motions on the search space: As any
assignment determined by a permutation may induce acode
motion, unrestricted types of code motions are possible. As
aresult, the search space is not limited by any restriction on
the nature, amount or scope of code motions. Thisis conve-
nient in thelate phases of adesign, when optimization goals
include usage of registers and interconnect and number of
states (which might all be affected by code motions).

Code-motion pruning: However, in early phases of a
design, we need afast but accurate estimate only in terms of
schedule length [4, 9]. In this scenario, we can allow some
reduction in search space by pruning code motions which

guaranteedly don’tinduce better solutions (seeAppendix A).

Impact on different application domains: Control—domi-
nated applications normally require that each path be opti-
mized as much as possible. Here the role of code motion is
obvious. However, in DSP applications, it is unnecessary to
optimize beyond the given global time constraint [14]. Even
though highly optimized code might not be imperative, the
role of code motions should not be overlooked evenin DSP
applications, because code motions can reduce the schedule
length of thelongest control path. Thetighter the constraints
are, the more important the code motions become. In our
approach, the advantage of taking code motionsinto account
is not bestowed at the expense of a "much larger search
space”, due to our code-motion pruning. Code motion is
especialy important when simple controllers are used for
code retargetability [11].

5. Experimental results

The method has been implemented in the NEAT system
[7]. A genetic algorithm is used as solution explorer in the
current implementation. For the representation of predicates
we are using the BDD package devel oped by Geert Janssen.

Table 1 — Results for Wakabayashi’s example
method | case | #alu | #add | #sub | chain | lengths
4,47
34,7
34,6
447
34,7
34,6
447
34,7
3,56
457
3,6,7
3,56

ours

TBS

HRA

CVLS
PBS

ooTlploowoow|looTw
N olojvo ovo o|vo O
or(rRlorRrOoORrROREKR
or(rRlorRrOoORrROREKR
N RNRINN RN RN R

Table 2 — Results for maha and parker

maha parker
method max/min_| avg | max/min_| avg
ours 4/1 2.25 4/1 2.00
CVLS 4/1 2.38 4/1 2.38
[16] 4/— 2.25 4/— 2.13
#adders = 2; # subtractors = 3

In table 1, our method is compared with others for the
examplein [18]. Results were collected from [10], [18] and
[12]. Our solutionfor caseaisasgood as TBSand HRA[12]
and better than CVLS. In case b our method, TBSand HRA
reach the same results which are better than PBS. For casec,
both our method and TBS are better than HRA and PBS. In
table 2 we compare our results for benchmarks maha and
parker used in [19] and [16]. Our method reachesthe same
average values for those methods during exploration (2.25,
2.38 and 2.13), but a better average value (2.00) is found.

Althoughwecertainly need to perform more experiments,
thesefirst resultsareencouraging. They seemto confirm that
our method isableto find the code motionswhich inducethe
better solutions.

Figures8 and 9 show theimpact of our code—motion prun-
ing. For the experiment, 50 solutions were constructed

induced by randomly generated permutations. Figure 8
shows results with (black) and without (gray) pruning. The
height of a bar represents the number of solutions counted
under different assumptions. In case (3) (waka(3) and
maha(3)), solutions are distinguished by comparing the
length of each path. In cases (1) and (2), solutions are distin-
guished only by their overall cost. Case (1) uses max T, asa

cost functionand case(2) uses > T,. Inwaka(3) for example,
32 different solutionsareidentified without pruning, but only
5with pruning. Thisreduction will lead to an effectivereduc-
tionin search space, which depends on the chosen cost func-
tion (compare waka(1) and (2)).

50
40
30
20

‘Zm.ﬂ.ﬂ. L

waka(1) waka(2) waka(3) maha(1) maha(2) maha(3)
Figure 8 — Reduction of the number of solutions

Not only the number of solutionsisreduced, but also the
range of cost values. The cost range ratio " no pruning/prun-
ing” is 2.5 for waka(1) and maha(1), 3.5 for waka(2), and
1.55for maha(2). Theseratiosareshowninfigure9, normal-
ized with respect to the "no pruning” cost range. This com-
paction on cost range suggests a higher probability of reach-
ing (near) optimal solutions during local search.

6. Conclusions and Future Work

We have cast the resource—constrained OP for descrip-
tionswith conditional sinto alocal search problem . The per-
mutation—driven constructor deals with code motions
constructively while keeping optimal solutionsin the search
space. Theapproach can be extended toinclude other issues.

Most methodsfor conditionalseither break |oopsor allow
limited optimization between iterations. Our method could
accommodate one of such approaches, but we prefer to
investigate loops as a further topic to prevent limitation on
the search space. We al so intend to consider time constraints.

Appendix A. Proof of the pruning technique

Theorem: Let Sy, be a solution of the described OP constructed
with algorithm 1 for agiven 11 and consider an operation o assigned
to BB j in such asolution. Let 6 be [delay(o)]. If asolution S, is
obtained by moving o from BB j into BB | and it allocates exactly
0 cyclestepsinside BB i, then cost(Sn) = cost(Sm), where cost
isamonotonically increasing functionintermsof schedulelengths.
Proof: LetI(k), L(k) € N bethe schedulelengths of aBB k before
and after the motion, respectively. Let p, g, r, s be BBs forming
path;: p—~g—r and path p—s—r. Let |, and L, be, respectively,
the schedule lengths of pthn before and after motion.

a) owasassigned to g and allocates 6 stepsinside p = L(p)=I(p)+d
a.1) No operation assigned to r can be moved in the allocated steps
= L(N=I(r), L(s) =I(s)-6, L(q) =I(q)-d=L; = ljand Lj = |;
a.2) Thereisan operation u assigned to r which can bemovedinthe
alocated steps. As u depends or has resource conflicts with opera-
tions assigned to q and s (topological sorted construction)

= L(q) =I(q)-0+ [delay(u)1,L(s) =1(s)-0+ [delay(u)1,

L(r) =1(n)-[delay(u)] =L = liand L} > |,

b) owasassigned to r and allocates 6 stepsinside both qand s
=L(g)=1(g)+0, L(9=I(9)+d, L(r) =I(N-o=L; =l and ||
c)owasassignedto r and allocates & stepsinsidep = L(p)= I(p)+c§
= 0 doesn't depend but has resource conflicts with operations
assigned to g and s (topological sorted construction)

= L(9)=1(q), L(9=I(s), L(n) =I(n)-0=L =} andLj =;

For agiven /7, solution S, have path lengths greater than or equal
tothosein Sy. Ascompound codemoationscan bebuilt out of these
basic code motions, and cost is monotonically increasing, we can
conclude without loss of generality that cost(Sn) = cost(Sm).

1.0
0.8
0.6
0.4
0.2

waka(1) waka(2) maha(1) maha(2)
Figure 9 — Compaction on cost range

References

[1] S. Amella and B. Kaminska, " Functional Synthesis of Digital
Systemswith TASS,” |IEEE Trans. CAD, 13(5): 537-552, May 1994.
[2] R. Bergamaschi et al., " Area and Performance Optimizationsin
Path Based Scheduling,” in Proc. Europ. Conf.on Des. Automation,
pp. 304-310, 1991.

[3] R. Camposano, " Path—based scheduling for synthesis,” |EEE
Trans. on CAD, 10(1): 85-93, Jan. 1991.

[4] R. Camposano and J. Wilberg, "Embedded System Design, ”
Design Autom. for Embedded Syst. Journal, n. 1, pp. 5-50, 1996.
[5] J.Eijndhoven and L.Stok, " A Data Flow Exchange Standard,” in
Proc. Europ. Conf. on Des. Automation, pp. 193-199, 1992.

[6] J. A. Fisher,” Trace Scheduling: A techniquefor global microcode
compaction,” |EEE Trans. Comput., vol. 30, July 1981.

[7] M.Heijligers et a., "NEAT: an Object Oriented High Level
SynthesisInterface”,inProc. IEEEISCAS 94., pp.1.233-1.236,1994.
[8] M.Heijligers and J.Jess, "High-Level Synthesis Scheduling and
Allocation using Genetic Algorithms based on Constructive
Topologica Scheduling Techniques,” Int. Conf. Evol. Comp.,1994
[9] J. Henkel and R. Ernst. " A Path—based Technique for Estimating
Hardware Runtime in HW/SW-cosynthesis’, in Proc. ACM/IEEE
1SSS 95, pp.116-121.

[10] SHuang et al., " A tree-based scheduling algorithm for control
dominated circuits,” in Proc. ACM/IEEE DAC' 93, pp-578-582
[11] AKifli et a.,”A Unified Scheduling Model for High-Level
Synthesisand Code Generation,” inProc. ED& TC' 95, pp.234-238.
[12] T.Kimetal.,” A Scheduling Algorithmfor Conditional Resource
Sharing—A Hierarchical Reduction Approach”,|EEE Trans.onCAD,
13(4):425-438, Apr 1994.

[13] M. S. Lam and R. P. Wilson, "Limits of Control Flow on
Parallelism,” ACM/IEEE Int. Symp. Comput. Archit., 1992, pp. 46-57.
[14] R.LeupersandP.Marwedel,” Timeconstrained CodeCompaction
for DSPs’, in Proc. ACM/IEEE ISSS 95, pp.54-59.

[15] C. Papadimitriouand K. Steiglitz. " Combinatorial optimization:
algorithms and complexity”. Prentice Hall, 1982.

[16] I.Radivojevic and F.Brewer, " A New Symbolic Technique for
Control Dependent Scheduling,” | EEE Trans.CAD, 15(1):45-57,1996.
[17] M. Rim, et a., "Global Scheduling with Code-Motions for
High-Level SynthesisApplications,” IEEE Trans. on VLS Systems,
vol. 3, no. 3, Sept. 1995, pp. 379-392.

[18] K. Wakabayashi and T. Yoshimura, " A resource sharing and
control synthesis method for conditional branches” in Proc.
ACM/IEEE ICCAD’ 89, pp.62—65.

[19] K. Wakabayashi andH. Tanaka, ” Global schedulingindependent
of control dependencies based on condition vectors,” in Proc.
ACM/IEEE DAC' 92, pp.112-115.

