
A Constructive Method for Exploiting Code Motion

Luiz C. V. dos Santos1, M.J.M. Heijligers, C.A.J. van Eijk, J.T.J. van Eijndhoven and J.A.G. Jess
Design Automation Section, Eindhoven University of Technology

P.O.Box 513, 5600 MB Eindhoven, The Netherlands

Abstract

In this paper we address a resource–constrained optimiza-
tion problem for behavioral descriptions containing
conditionals. In high–level synthesis of ASICs or in code
generation for ASIPs, most methods use greedy choices in
such a way that the search space is limited by the applied
heuristics. For example, they might miss opportunities to
optimize across basic block boundaries when treating
conditional execution. We propose an approach based on
local search and present a constructive method to allow
unrestricted types of code motion, while keeping optimal
solutions in the search space. A code–motion pruning
technique is presented for cost functions optimizing schedule
lengths. A technique for treating concurrent flows of
execution is also described.

1. Introduction

In the high–level synthesis of an application–specific
integrated circuit (ASIC) or in the code generation for an
application–specific instruction set processor (ASIP), four
main difficulties have to be faced when conditionals are pres-
ent in the behavioral description:
a) the NP–completeness of the resource–constrained sched-

uling problem itself.
b) the limited parallelism of operations enclosed by basic

blocks, as they might not use all available resources com-
pletely.

c) the possibility of state explosion because the number of
paths may explode in the presence of conditionals.

d) the possibility of state expansion due to limited resource
sharing of mutually exclusive operations (which is lim-
ited by the timely availability of test results).
Most methods apply different heuristics for each subprob-

lem (BB scheduling, code motion, code size reduction) as if
they were independent. An heuristic is used to decide the
order of the operations during scheduling (like the many fla-
vors of priority lists), another to decide whether a particular
code motion is worth doing [6, 17], yet another for a reduc-
tion on the number of states [18]. As a result, these
approaches might miss optimal solutions.

We propose a formulation to encode potential solutions
for the interdependent subproblems. We show that optimal
solutions are kept in the search space. The formulation
abstracts from the linear–time model and allows us to con-
centrate on the order of operations and availability of
resources. Figure 1 shows the outline of our approach. We
1. On leave from INE, Fed. Univ. of Santa Catarina, Brazil. Partially
supported by CNPq (Brazil) under fellowship award n. 200283/94–4.

have a solution explorer which is based on a local search
algorithm [15]. The constructor is driven by a permutation

�
of the operations in the data flow graph. The explorer handles
encoded solutions and uses a solution constructor to evaluate
their cost. A code–motion pruning is embedded in the
constructor to reduce the search space.

constructor

cost
� explorer

Figure 1 – An outline of the approach
The main contributions of our approach are:

a) A method to encode BB scheduling and code motion as
an unified problem such that unrestricted code motions
can be induced;

b) A code–motion pruning technique which preserves opti-
mal solutions in the search space;

c) A technique for treating concurrent flows of execution
when a single flow of control is targeted.

2. The Problem

Definition 1: A control data flow graph DFG = (U, E) is
a directed graph where the nodes represent operations and the
edges represent the dependencies between them. We assume
that the DFG contains conditional constructs.

Definition 2: An execution condition is associated with
every operation, represented as a boolean function, here
called a predicate. An execution instance (EXI) is a set of
operations executed under a given predicate.

Definition 3: A basic block (BB) is a set of operations
which all have the same execution condition.

Definition 4: A basic block control flow graph BBCG =
(V, F) is a directed graph where the nodes represent basic
blocks and the edges represent the flow of control. We allow
that an operation initially associated with a given BB be
”moved” to another BB; this is called code motion.

Definition 5: Each traversal in the BBCG from an input
node to an output node such that only BBs which execute
under a same predicate are visited defines a path. A path
defines a sequence of BBs which enclose all the operations
belonging to an EXI of the DFG. Each path in the BBCG cor-
responds to exactly one EXI in the DFG.

Optimization problem (OP): Given a number K of func-
tional units and an acyclic DFG, find a control sequence rep-
resented by a state machine graph, in which precedence
constraints of the DFG are obeyed and the resource
constraints are satisfied for each functional unit type, such
that a cost function C is minimized.

Our motivation to address this resource–constrained
problem is due to the increasing interest to find the balance
between architectural synthesis and code generation tech-
niques (e.g. application–domain ASIPs).

General instances of the OP: The method presented in this
paper addresses instances of the OP for arbitrary cost func-
tions which can be extended to include not only schedule
length, but also issues like register and interconnect usage,
and number of states. This is convenient especially in late
phases of a design flow, where optimization has to take sev-
eral design issues into account.

Particular instances of the OP: In early phases of a design
flow, the optimization objectives are dictated by the real–
time requirements of embedded systems design. The slowest
possible execution time of a piece of code must meet real–
time constraints [4]. At the other hand, as these early phases
tend to be iterated several times, runtime efficiency is
imperative. For these reasons we propose a pruning tech-
nique to tackle instances of the OP for which the cost function
can be written as C � f (T1, T2, � � � , Tn) , where Ti is the sched-
ule length of the ith path in the BBCG and f is a monotoni-
cally increasing function. This pruning guarantees the pres-
ence of optimal solutions in the search space in terms of
schedule lengths (see [8] and proof in Appendix A).

3. Related Work

In path–based scheduling (PBS) [3, 2] a so–called as–
fast–as–possible (AFAP) schedule is found for each path
independently, provided that a fixed order of operations be
chosen in advance. Due to the fixed order and to the fact that
scheduling is cast as a clique covering problem on an interval
graph, code motions resulting in speculative execution are
not allowed. Thus, the method has limited capability of
exploiting parallelism with complex control flow [13]. This
limitation is released in tree–based scheduling (TBS) [10],
by allowing boosting and duplication code motions.

Condition vector list scheduling (CVLS) [18] allows code
motion and supports speculative execution. However, the
underlying mutual exclusion representation is limited [1].

In Trace–scheduling (TS) [6] a main path (trace) is chosen
to be scheduled first and independently of other paths, then
another trace is chosen and scheduled, and so on. TS doesn’t
allow certain types of code motion across the main trace.

In [17] an approach is presented where code–motions are
exploited. BBs are scheduled using a list scheduler and then
code motions are allowed. One priority function is used in the
BB scheduler and another for code motion. Code motion is
allowed only inside windows containing a few BBs to keep
runtime low, but then iterative improvement is needed not to
restrict too much the kind of code motions allowed.

Among those methods, only PBS is exact, but it solves a
partial problem where speculative execution is not allowed.
TBS and CVLS address BB scheduling and code motions
simultaneously, but use classical list scheduler heuristics. TS
combines both subproblems in a per trace basis, but main–
trace–first heuristics are applied. In [17] a different heuristic
is applied to each subproblem. All those methods may
exclude optimal solutions from the search space.

In [16], an exact symbolic technique for control depen-
dent scheduling is presented. However, restrictions are
imposed on the speculative execution model. Besides, the
use of an exact method in early (more iterative) phases of a
design is unlikely, especially because no pruning is presented
to cope with the larger search space due to code motions.

A method could be envisaged where no restriction is
imposed neither on the kind of code motion, nor on the order
the operations are taken to be scheduled.

4 The method
4.1. Outline of the method

The solution constructor takes a permutation of the opera-
tions and generates a solution. Techniques borrowed from
the constructive topological sorted scheduler [8] are used,
because it has the important property that there always exists
a permutation which results in an optimal solution. A sched-
ule is constructed out of the permutation as follows. An
operation to be scheduled is selected among ready operations
(unscheduled operations whose predecessors are all sched-
uled) following the order in the permutation. Each selected
operation is attempted to be scheduled at the as early as pos-
sible time where a free resource is available.

+

+ – >

� � [a, c, d, e, b, f, g, t]

+

+

+
–

–

>a

c

d f
be

t

g

a a a
c

a
c

a

DFG

+

a

f

a

f
g

a

f

t

g

c c c c c
e e e e ed d d d d d

b b b b

c b/
a t

e d
f

g

(a)

(b)

(c)

sc
he

du
le

tim
e

st
ep

s
scheduling evolution

module
usage

Figure 2 – Using the topological sorted scheduler
In figure 2, a linear–time sequence is constructed for a

given permutation. See [5] for an explanation of the symbols
used. The topological sorted scheduler is applied on purpose
in a very straightforward way (figure 2b). No information
about mutual exclusion is used. When such information is
used, b can be scheduled at the second step by sharing an
adder with operation c (figure 2c). We are assuming that the
outcome of t is not available inside the first step to allow a and
b to conditionally share a resource. The resulting schedule
length is reduced to 5 steps for both EXIs, even though the
EXI (t, b, g) could be scheduled on its own in only two steps.
Information about mutual exclusion is clearly not enough
and the limitation is the linear–time model. To allow a more
efficient solution, some mechanism has to split the linear–
time sequence by exposing a flow of control. Our mechanism
is based on initial links, as we will explain in the next subsec-
tions.

4.2. Initial links

In our method we want to capture the freedom for code
motions without restrictions and for this purpose we
introduce the notion of a link. A link connects an operation
u in the DFG with a BB v in the BBCG. Its interpretation is
that u may be executed under the predicate which defines the
execution of operations in v. A same operation can be linked
to several mutually exclusive BBs. Figure 3 illustrates the
link concept. A merge node (M) represents data selection and
a branch node (B) represents control selection.

1

2 3

4

BBCGDFG

ta b

c d

e

B
B

MM

B B

Figure 3 – Paths and execution instances
Initial links: We will encode the freedom for code motion

by using a set of initial links. First, we look for each operation
whose result has to be available before a control or data selec-
tion point in a given EXI. Such an operation is said to be a
terminal. Each terminal is linked to the BB which precedes
the corresponding selection point in the BBCG. In figure 3,
initial links are shown for terminals c and d (due to data
selection) and t (due to control selection).Then, we link each
ancestor of a terminal to the same BB to which the latter is
linked. Operation a is not a terminal and will have initial links
(not shown in figure) to both BB2 and BB3; b will have a
single initial link pointing to BB3. Each link points to the lat-
est BB in a given path where the respective operation can still
be executed. This means that each operation is free to be
executed inside any preceding BB on the same path as soon
as data precedence and resource constraints allow (the only
control dependency to be satisfied is the need to execute the
operation at the latest inside the BB pointed by the initial
link).The underlying idea is to traverse the BBCG in topolog-
ical order trying to schedule operations in traversed BBs. If
operation u is given an initial link to BB v and v is reached
in the traversal, then u must be scheduled inside it. We say
that the assignment of u to BB v is compulsory .

a b t

c d

e

f

1

2 3

4

�
i

Figure 4 – Linking unconditional operations
Final assignments: Each link � will be called here an

operation assignment (from now on called simply assign-
ment) when it obeys precedence constraints and it doesn’t
imply the need for more than the available functional units.
Assignments which might increase registers and/or intercon-
nect usage are included in the search space. Each assignment

from an operation u into a BB v is given the following attrib-
utes: a) condition (execution condition of u when its predi-
cate is completely evaluated); b) begin (operation starting
time of u in BB v); c) end (completion time of u in BB v).
Assignments represent a relative–time encoding. The abso-
lute time is given by the instant BB v starts execution plus the
value in attribute begin.

Freedom for code motion: Operations may be redundant
for some paths in a behavioral description [10]. TBS uses
tree optimization to remove redundancies by propagating
each operation to the latest BB where it is to be used. CVLS
eliminates them by using extended condition vectors [18].
Even though they remove redundancies, those methods don’t
succeed to encode the freedom for code motion. Tree opti-
mization works well for (nested) conditional trees, but in the
case of parallel flows of execution, the quality of a solution
may depend on the description. In figure 4, after tree opti-
mization, the unconditional operation f would remain
associated to the BB wherein it was originally described.

Merging concurrent flows of execution: Our initial links
do not only handle redundancies, but also encode freedom
for code motion. In figure 4, f may be linked to BB4, to both
BB3 and BB2 or to BB1. � i is the initial link, because the only
control dependency to be satisfied is that f execute before the
output is available. As operation f can be executed in BB1 or
in any preceding BB as soon as resource and data dependency
constraints are satisfied, unrestricted code motions can be
exploited, even for concurrent flows of execution.

4.3. The solution constructor

Traversing in topological order: The solution constructor
follows the flow of tokens in the DFG while the BBCG is tra-
versed in topological order. An operation can be assigned to
any traversed BB, as soon as data precedence and resource
constraints allow. If more than one operation satisfies these
constraints, an operation will be chosen based on the order in
the permutation. Such an assignment is not compulsory as
long as the BB to which the operation was initially linked is
not reached. As a result, an initial link u � v might become
a final assignment, but it will be revoked if u succeeds to be
scheduled inside any ancestor of v, inducing a code motion.

Splitting the linear–time sequence: Only when an opera-
tion is compulsory in a BB, it is allowed to ”allocate” extra
time steps inside that BB. This will make room for schedul-
ing non–compulsory operations in idle resources. We claim
that the underlying pruning associated with this criterion to
split the linear–time sequence doesn’t discard any better
solutions (see section 2 and proof in Appendix A).

Example: In figure 5 the same example as in figure 2 is
scheduled to illustrate the method. It is shown in figure 5b
how each EXI could be scheduled independently. EXI1 = {t,
a, c, e, d, f, g} is scheduled in five steps and EXI2 = {t, b, g}
is scheduled in 2 steps. It is not possible to overlap those
sequences, because a and b cannot share the adder (the out-
come of test t is not available inside the first step). Even
though each path can be AFAP scheduled for the given � ,
there is a conflict between them so that if one sequence is
chosen, the other will be imposed an extra step. Figure 5c
shows the initial links. Figures 5d to 5k show the evolution

+ – >

� 	 [a, c, d, e, b, f, g, t]

t ta ta

b

ta

b

ta

b

ta

b
d

ta

b d
f

ta

b d
f

g

+

+

+

+

–

–

>a

c

d
f

be

t

g

t

g

b

a
c

d

e

f

a a a
c

a

e
c

d

b

a

e
c

d
f

g
b

g

a

e
c

d
f

g

a

e
c

d
f

t

g

DFG

BBCG

+

b t
(a) (b) (c)

(d) (e) (f) (g) (h) (i) (j) (k)

EXI1

EXI2

c
d

c c c

c c

d e
e e

module
usage

Figure 5 – Splitting the linear–time sequence

for each operation in
 . Circles in bold mark the current BB
being traversed. Note in figure 5d that, even though other
ready operations (a, e and b) precede t in
 , t is the scheduled
one because it is the only compulsory operation in the current
BB. Then a is scheduled (figure 5e) in the same step, as an
idle adder exists. At that point no other ready operations can
be scheduled in that BB, as they would require the allocation
of extra steps. Then, another BB is taken (figure 5f) and so
on. Figure 5k shows the final result. It is the same as obtained
by scheduling EXI1 independently (figure 5b), but EXI2 was
imposed an extra step. Note that if a and b were exchanged
in
 , the solution in 5b for EXI2 would be obtained, while
EXI1 would be imposed an extra step. When a conflict hap-
pens between paths, the method solves it in a certain way
induced by
 , but there exists another permutation
 � which
induces a solution in the opposite way (no limitation in
search space). Note that the assignment of operations a or b
to the first step represents speculative execution. If we don’t
allow speculative execution both EXIs will be imposed an
extra step, resulting in schedule lengths of 3 and 6.

Notion of order dominant over notion of time step: As
opposed to other approaches [18, 12], this method doesn’t
use time as a primary issue to decide on the position an opera-
tion will be assigned to. Instead, a notion of order and avail-
ability of resources in control flow is used. As assignments
incorporate a relative–time encoding, time is only used to
manage resource utilization inside BBs. Our approach
doesn’t enumerate exhaustively combinations of time steps
to schedule an operation, which exempts the use of greedy
choices to decide on the position of an operation in different
paths [12] and to control the number of states [18].

The solution constructor is summarized in algorithm 1. �
is a permutation, C is the set of BBs, u is an operation, v is
a BB,
 is an assignment and � (
) is a real number. Function

maxTop(C) returns BBs in a arbitrary topological order. A
candidate assignment
 is created for each pair (u,v) and the
condition unscheduled(�) � scheduledpreds(�) is evaluated. If
this condition holds, the earliest step in v with a free resource
(� (
)) will be found. Function isSuitable(� , � (�)) decides
whether
 should be committed or revoked. When all com-
pulsory operations are scheduled and there is no room for
scheduling others, a new BB is taken.
construct_solution(C, �)
while C � �

v := maxTop(C);
j := 0;
while j < | � |

u:= � [j++];� := assignment(u,v);
if (unscheduled(�) � scheduledpreds(�));

then � (�):=asap(�);� (�):=satisfyResConstraints(� , � (�));
if isSuitable(� , � (�))

then annotate(� , � (�));
solveCodeMotion(�);
j:=0;

update(C);
Algorithm 1 – The solution constructor

Runtime complexity: Let n be the number of operations in
 , b the number of BBs, p the number of paths and c the num-
ber of conditionals. The search for the first ready operation
in
 takes O(lg n). As this search may be repeated for each
operation and for each BB, the worst case complexity of
algorithm 1 is O(b n lg n). The runtime efficiency of our
approach doesn’t depend on p (which can grow exponen-
tially in c), as opposed to path–based methods.

4.4. Exploiting unrestricted code motions
In this section we summarize the relationship between ini-

tial links, assignments and code motions. A detailed analysis
of code motions can be found in [17].

1

2 3

4

1

2 3

4

a
�

f � a
�

f � �

a
�

i

a
�

i

a
�

f

(a) (b)
1

2 3

4

1

2 3

4

a
�

i

a
�

fa
�

f

a
�

i � a
�

i � �

(c) (d)
Figure 6 – Basic code motions

Basic code motions: Figure 6 illustrates code motions in
the scope of a single conditional: duplication–up (a), boost-
ing–up (b), unification (c) and useful (d). � f represents a final
assignment and � i an initial link. A circle in bold represents
the current BB being traversed. Once � f succeeds, the cov-
ered � i’s are revoked. Even though only upward motions are
explicitly shown, downward motions are implicitly sup-
ported, as the initial links encode the maximum freedom for
code motions downwards.

Figure 7 – Generalized code motions
Generalized code motions: Figure 7 shows generalized

code motions supported in our approach. Arrows indicate
possible upward motions from an origin BB to a destination
BB. Gray circles illustrate more local code motions, which
are handled by most methods. Either they correspond to the
basic code motions of figure 6 or to a few combinations of
them. In [17] these combinations are attempted via iterative
improvement inside windows containing a few BBs. Black
circles illustrate more global code motions also supported in
our method. Note that such ”compound” motions are deter-
mined at once by the permutation and are not the result of
successive application of basic code motions. We do not
search for the best code motions inside a solution, we do
search for the best solution whose underlying code motions
induce the best overall cost.

Impact of code motions on the search space: As any
assignment determined by a permutation may induce a code
motion, unrestricted types of code motions are possible. As
a result, the search space is not limited by any restriction on
the nature, amount or scope of code motions. This is conve-
nient in the late phases of a design, when optimization goals
include usage of registers and interconnect and number of
states (which might all be affected by code motions).

Code–motion pruning: However, in early phases of a
design, we need a fast but accurate estimate only in terms of
schedule length [4, 9]. In this scenario, we can allow some
reduction in search space by pruning code motions which

guaranteedly don’t induce better solutions (see Appendix A).
Impact on different application domains: Control– domi-

nated applications normally require that each path be opti-
mized as much as possible. Here the role of code motion is
obvious. However, in DSP applications, it is unnecessary to
optimize beyond the given global time constraint [14]. Even
though highly optimized code might not be imperative, the
role of code motions should not be overlooked even in DSP
applications, because code motions can reduce the schedule
length of the longest control path. The tighter the constraints
are, the more important the code motions become. In our
approach, the advantage of taking code motions into account
is not bestowed at the expense of a ”much larger search
space”, due to our code–motion pruning. Code motion is
especially important when simple controllers are used for
code retargetability [11].

5. Experimental results
The method has been implemented in the NEAT system

[7]. A genetic algorithm is used as solution explorer in the
current implementation. For the representation of predicates
we are using the BDD package developed by Geert Janssen.

Table 1 – Results for Wakabayashi’s example
method case #alu #add #sub chain lengths

ours
a 0 1 1 1 4,4,7

ours b 0 1 1 2 3,4,7ours
c 2 0 0 2 3,4,6

TBS
a 0 1 1 1 4,4,7

TBS b 0 1 1 2 3,4,7TBS
c 2 0 0 2 3,4,6

HRA
a 0 1 1 1 4,4,7

HRA b 0 1 1 2 3,4,7HRA
c 2 0 0 2 3,5,6

CVLS a 0 1 1 1 4,5,7

PBS
b 0 1 1 2 3,6,7

PBS c 2 0 0 2 3,5,6

Table 2 – Results for maha and parker

method
maha parker

method max/min avg max/min avg
ours 4/1 2.25 4/1 2.00

CVLS 4/1 2.38 4/1 2.38
[16] 4/– 2.25 4/– 2.13

#adders = 2; # subtractors = 3

In table 1, our method is compared with others for the
example in [18]. Results were collected from [10], [18] and
[12]. Our solution for case a is as good as TBS and HRA[12]
and better than CVLS. In case b our method, TBS and HRA
reach the same results which are better than PBS. For case c,
both our method and TBS are better than HRA and PBS. In
table 2 we compare our results for benchmarks maha and
parker used in [19] and [16]. Our method reaches the same
average values for those methods during exploration (2.25,
2.38 and 2.13), but a better average value (2.00) is found.

Although we certainly need to perform more experiments,
these first results are encouraging. They seem to confirm that
our method is able to find the code motions which induce the
better solutions.

Figures 8 and 9 show the impact of our code–motion prun-
ing. For the experiment, 50 solutions were constructed

induced by randomly generated permutations. Figure 8
shows results with (black) and without (gray) pruning. The
height of a bar represents the number of solutions counted
under different assumptions. In case (3) (waka(3) and
maha(3)), solutions are distinguished by comparing the
length of each path. In cases (1) and (2), solutions are distin-
guished only by their overall cost. Case (1) uses max Ti as a
cost function and case (2) uses � Ti. In waka(3) for example,
32 different solutions are identified without pruning, but only
5 with pruning. This reduction will lead to an effective reduc-
tion in search space, which depends on the chosen cost func-
tion (compare waka(1) and (2)).

�
� �
� �
� �
� �
� �

� � � ! � " � � � ! � " � � � ! � " # � $ � ! � " # � $ � ! � " # � $ � ! � "
Figure 8 – Reduction of the number of solutions

Not only the number of solutions is reduced, but also the
range of cost values. The cost range ratio ”no pruning/prun-
ing” is 2.5 for waka(1) and maha(1), 3.5 for waka(2), and
1.55 for maha(2). These ratios are shown in figure 9, normal-
ized with respect to the ”no pruning” cost range. This com-
paction on cost range suggests a higher probability of reach-
ing (near) optimal solutions during local search.

6. Conclusions and Future Work

We have cast the resource–constrained OP for descrip-
tions with conditionals into a local search problem . The per-
mutation–driven constructor deals with code motions
constructively while keeping optimal solutions in the search
space. The approach can be extended to include other issues.

Most methods for conditionals either break loops or allow
limited optimization between iterations. Our method could
accommodate one of such approaches, but we prefer to
investigate loops as a further topic to prevent limitation on
the search space. We also intend to consider time constraints.

Appendix A. Proof of the pruning technique
Theorem: Let Sm be a solution of the described OP constructed
with algorithm 1 for a given % and consider an operation o assigned
to BB j in such a solution. Let & be ' delay(o) (. If a solution Sn is
obtained by moving o from BB j into BB i and it allocates exactly& cycle steps inside BB i, then cost(Sn)) cost(Sm), where cost
is a monotonically increasing function in terms of schedule lengths.
Proof: Let l(k), L(k) * + be the schedule lengths of a BB k before
and after the motion, respectively. Let p, q, r, s be BBs forming
pathi: p , q , r and pathj: p , s , r. Let ln and Ln be, respectively,
the schedule lengths of pathn before and after motion.
a) o was assigned to q and allocates & steps inside p - L(p)=l(p)+ &
a.1) No operation assigned to r can be moved in the allocated steps- L(r)=l(r), L(s) . l(s)– & , L(q) . l(q)– & - Li . li and Lj . lj
a.2) There is an operation u assigned to r which can be moved in the
allocated steps. As u depends or has resource conflicts with opera-
tions assigned to q and s (topological sorted construction)

- L(q) . l(q)– & + ' delay(u) (,L(s) . l(s)– & + ' delay(u) (,
L(r) . l(r)– ' delay(u) (- Li . li and Lj . lj
b) o was assigned to r and allocates & steps inside both q and s
 - L(q)=l(q)+ & , L(s)=l(s)+ & , L(r) . l(r)– & - Li . li and Lj . lj
c) o was assigned to r and allocates & steps inside p - L(p)=l(p)+ &- o doesn’t depend but has resource conflicts with operations
assigned to q and s (topological sorted construction)- L(q)=l(q), L(s)=l(s), L(r) . l(r)– & - Li . li and Lj . lj
For a given % , solution Sn have path lengths greater than or equal
to those in Sm. As compound code motions can be built out of these
basic code motions, and cost is monotonically increasing, we can
conclude without loss of generality that cost(Sn)) cost(Sm).

�
� / �
� / �
� / 0
� / 1
� / �

� � � ! � " � � � ! � " # � $ � ! � " # � $ � ! � "
Figure 9 – Compaction on cost range

References
[1] S. Amellal and B. Kaminska, ”Functional Synthesis of Digital
Systems with TASS,” IEEE Trans. CAD, 13(5): 537–552, May 1994.
[2] R. Bergamaschi et al., ”Area and Performance Optimizations in
Path Based Scheduling,” in Proc. Europ. Conf.on Des. Automation,
pp. 304–310, 1991.
[3] R. Camposano, ”Path–based scheduling for synthesis,” IEEE
Trans. on CAD, 10(1): 85–93, Jan. 1991.
[4] R. Camposano and J. Wilberg, ”Embedded System Design, ”
Design Autom. for Embedded Syst. Journal, n. 1, pp. 5–50, 1996.
[5] J.Eijndhoven and L.Stok, ”A Data Flow Exchange Standard,” in
Proc. Europ. Conf. on Des. Automation, pp. 193–199, 1992.
[6] J. A. Fisher, ”Trace Scheduling: A technique for global microcode
compaction,” IEEE Trans. Comput., vol. 30, July 1981.
[7] M.Heijligers et al., ”NEAT: an Object Oriented High Level
Synthesis Interface”, in Proc. IEEE ISCAS’94., pp.1.233–1.236,1994.
[8] M.Heijligers and J.Jess, ”High–Level Synthesis Scheduling and
Allocation using Genetic Algorithms based on Constructive
Topological Scheduling Techniques,” Int. Conf. Evol. Comp.,1994
[9] J. Henkel and R. Ernst. ”A Path–based Technique for Estimating
Hardware Runtime in HW/SW–cosynthesis”, in Proc. ACM/IEEE
ISSS’95, pp.116–121.
[10] S.Huang et al., ”A tree–based scheduling algorithm for control
dominated circuits,” in Proc. ACM/IEEE DAC’93, pp–578–582
[11] A.Kifli et al.,”A Unified Scheduling Model for High–Level
Synthesis and Code Generation,” in Proc. ED&TC’95, pp.234–238.
[12] T. Kim et al., ”A Scheduling Algorithm for Conditional Resource
Sharing – A Hierarchical Reduction Approach”, IEEE Trans. on CAD,
13(4):425–438, Apr 1994.
[13] M. S. Lam and R. P. Wilson, ”Limits of Control Flow on
Parallelism,” ACM/IEEE Int. Symp. Comput. Archit., 1992, pp. 46–57.
[14] R.Leupers and P.Marwedel, ”Time constrained Code Compaction
for DSPs”, in Proc. ACM/IEEE ISSS’95, pp.54–59.
[15] C. Papadimitriou and K. Steiglitz. ”Combinatorial optimization:
algorithms and complexity”. Prentice Hall, 1982.
[16] I.Radivojevic and F.Brewer, ”A New Symbolic Technique for
Control Dependent Scheduling,”IEEE Trans.CAD,15(1):45–57, 1996.
[17] M. Rim, et al., ”Global Scheduling with Code–Motions for
High–Level Synthesis Applications,” IEEE Trans. on VLSI Systems,
vol. 3, no. 3, Sept. 1995, pp. 379–392.
[18] K. Wakabayashi and T. Yoshimura, ”A resource sharing and
control synthesis method for conditional branches,” in Proc.
ACM/IEEE ICCAD’89, pp.62–65.
[19] K. Wakabayashi and H. Tanaka, ”Global scheduling independent
of control dependencies based on condition vectors,” in Proc.
ACM/IEEE DAC’92, pp.112–115.

