Parallelization of C programs
through dependency analysis

Jos van Eijndhoven
Jjos@vectorfabrics.com

June 20, 2012

@ VectorFabrics

Discovering potential concurrency

f Parallel APlg__, \ 4 Platforms y
My

gy Al o 2 e

POSIX Threads
$ e AMDZ1 ARM
¢ OpenMP J{ = EXILINX.)

Sl.o'w application and Fast application
Silicon goes unused Silicon put to work

2 | June 20, 2012 HPDC /\,\<> Vector Fabrics

Presentation index

L9

LS

LY

LY

Multi-processors will further expand
Partitioning workload across multiple cores:
» Data partitioning
» Functional partitioning
Tooling for dependency analysis
Example: LAMMPS

Conclusion

3 | June 20, 2012 HPDC

<

Vector Fabrics

Programming parallel computers

» Multi-processor machines are all around us,
ranging from mobile to super-computers.

» Multi-processor architectures are driven by
technology factors: increased integration
densities and power efficiency requirements.

» Parallel (multi-threaded) programs are
required to exploit their capability.

» However, parallel programming is difficult
and error-prone. Unfortunately, software
productivity already is a major bottleneck.

» Distributed-memory architectures and
heterogeneous processors (GP-GPUs) add
further complications.

,“‘ eite

* wirgan

L

Application programmers need more help!

%
395

Intel Aubrey Isle (MIC)

4 | June 20, 2012 HPDC /\,\<> Vector Fabrics

Creating multi-threaded concurrency

Basic fork-join pattern, created through different
higher-level programming constructs

Main program thread

Concurrent computation threads

Creation of threads is application responsibility.
Operating System handles run-time scheduling
across available processors.

Main thread continues

5 | June 20, 2012 HPDC /\,\<> Vector Fabrics

Parallelization — two partitioning options

Source code: Sequential execution order:
for (i=0; i<4; i++) { ajo) A1) 2l2) Al(3)

A(i) ; B(0) B|(1)’ B|(2)’ B((3)

B (i) ; cl0) cl(r) c[(2) c|(3)

C(i),‘ v v \/

Data partitioning:

Functional partitioning:

6 | June 20, 2012 HPDC /\,\<> Vector Fabrics

Functional versus data partitioning

Data partitioning:

» Allows a high degree of parallelization for loops with high
iteration count.

» Allows good distribution of workload across (homogeneous)
Processors.

» Loop-carried data dependencies can severely impact
performance.

Functional partitioning:

» Best for separation of workload across heterogeneous
processors.

» Inter-function data dependencies typically converted into
buffered streams.

Choice is directed by data dependency patterns.

7 | June 20, 2012 HPDC /\,\<> Vector Fabrics

Example functional partitioning

int A[N] [M]; Threadl: while (..)

produce img () ;
while (.. ——;>
C.) Thread”?: while (..)

{ produce img();
consume img() ;

}

consume img() ;

produce img ()

{ figr(i(j) Synchronize thread progress:
A[i][3] = » True dependency: consumer
} must wait for valid data
consume img () » Anti dependency: producer
{ figr <i(j cee)) must wait with over-writing until
= A[A][3]; after consumption

}

8 | June 20, 2012 HPDC /\,\<> Vector Fabrics

Function pipelining: synchronization

int A[N] [M]; Channel ch;

while (..)
{ produce img();
consume 1img () ;

}

Threadl: while (..)
produce img () ;

Thread?2: while (..)
consume img() ;

produce 1img ()
{ for (i ...) produce_1img ()
for (3 ...) { for (1 ...)
A[i][3] = ... for (3 ...)
} write int(ch, ...)

}

consume 1mg ()

{ for (1 ...) consume 1img ()
for (j .) { for (1 ...)
. = A[i][3]1; for (3 ...)

} c.. =

Channel access functions
Implement thread stall.

ead;int(ch);

9 | June 20, 2012 /\,\<> Vector Fabrics

Pipeline dependency analysis

/ o https/fjos.vectorfabri

« o2 4 jos

PE——

Project Profile My changes
Data partitioning candidates

XL.slr. View Melp Cose m

® Loop_36507 cannot be subjected to data partitioning: There are @

¥ introduction 0o
1 loop-carried memory clusters that you have chosen not to IU :
.
YHMP

ignore: [memory custer 25) This guide will walk you through

the process of uploading and
building your source code.

Click the help icon on the right
to get more information. Click
the skip icon to skip an optional
step or click the check icon 1o

mark the step as compéeted and
Functional pantitioning - Loop_36507 peoceed to the next step.
Partition id Threads Speedup Streams Apply ¥ Uploading source code
Pactition 1 2 26 3 Apoly P Configuring project settings Q
Pantition 2 4 26 3 Apply P Building the project e
Partition 3 3 24 2 Apply
Partition 4 3 22 2 Apply . L T AT AN 34
Dantition & ? 12 n Anndy - - - -
= | Potential pipelining
Properties A
i .
 ——— 355 ‘ showed in colors,
Function e 5 SELECT 3 p full cal = — . . .
e S with resulting Fifo's
¥ Uncovered lines
e snapshoy R T e
W13 ON _w'_a
¥ Invocation time
Estimated 38188ns
Constraint <dick to edit>
¥ Invocation statistics
Computation time 28812ns (755 %)
¥ Memory penalty 9375 n5 (245%)
* DRAM traffic 08

* DRAM bandwidth 08
¥ Data cache statistics

¥ Penalties
Level 1 9375ns
Level 2 0os v
Status: ready

= ViThreaded-x86

10 | June 20, 2012 vVectorF orics

Function pipelining: Channel APIs

Too many choices for channel-based communication:
» Standard Java util.concurrent queue classes

» Intel’'s TBB (C++) queues

» Linux 'pipes' and 'sockets'

» OpenCL channels

» OpenMAX IL for streaming media processing

» MPI message-passing channels

Very different queue implementations:

» Inter-thread, inside process memory context
» Inter-process, inside shared-memory system
» Inter-system, through device interfaces

NOTE: C++ STL queues are NOT thread-safe!
11 | June 20, 2012 HPDC @Vector Fabrics

Example data partitioning

int sum = 0;
for (i=0; 1i<N; 1i++) {
int value = some work(1i);

sum += value;

}

» Distribute the workload over multiple cores.
» Each core handles part of the loop index space.

int sum = 0;
fprragma omp parallel for reduction (+:sum)
for (i=0; i<N; i++) {

int value = some work(1i);

sum += value;

}

» Workload scales nicely across multiple cores

» Easy to write down ©, but hard to grasp all consequences!
» Highly dangerous, might cause extremely hard-to-track bugs! @

12 | June 20, 2012 HPDC /\,\<> Vector Fabrics

Application Analysis

Project Profile m X xLabs Help Close

Data partitioning - Loop_244

Partition id Threads Speedup Streams

Partition 1[:H 40 6

Functional partitioning - Loop_244

Partition id Threads Speedup Streams
Partition 2 24
Partition 3 24
Partition 4 20
Partition 5 1.7
Partition 6 1.7
Partition 7 2.0
Partition 8 15

Properties
¥ Compute dependency 1616
¥ Source
Operation (+) Loop_244 (applyDetectionWindo
Location featuregenhoq.c: 584
¥ Destination
Operation (+) Loop_244 (applyDetectionWindo

Location featuregenhog.c: 584
Loop carried

13 | June 20, 2012 HPDC % Vector Fabrics

Finding data dependencies

Vector Fabrics’ approach:

» Compile program source code, compiler is adapted for
Instrumentation.

» Execute the instrumented program:

» Traps all memory load/store operations:
match |d/st operations that address the same memory location

» Relates Id/st operations with nested loop structure:

separate loop-carried dependencies from loop in-bound and loop out-bound
dependencies

» Builds an execution profile (call tree), across file boundaries

» Analyze loops with their data dependencies for parallelization
patterns

14 | June 20, 2012 HPDC /\,\<> Vector Fabrics

Recognize parallelization patterns

Analyze loops with data dependencies for parallelization patterns:

» Reduction expressions

» Induction expressions

» Streaming dependencies, allowing data duplication and localization

Avoid considering ‘false’ memory dependencies:
» Local variables on stack, duplicated through thread local storage

» Re-use of memory locations through malloc () and free ().

Relate data dependencies and patterns to locations in C(++) source
code for required code transformations.

15 | June 20, 2012 HPDC /\,\<> Vector Fabrics

Example: LAMMPS molecular simulator

» Source code configured for sequential version.
» About 187Klines of C++ source code in 636 files.

Name
Y _entry
Y main
YR Input:file
Y& Loop_3344
¥® input:execute_command
¥ Run:command
>R Verlet::setup
YR verletzrun
V@& Loop_10164
>R Modify::initial_integrate
P> Neighbor:decide
>R Neighbor:build
Y@ PairLJCut::compute
V& Loop_10535
P @ Loop_10536
g Modify::post_force

> Modify:final_integrate

16 | June 20, 2012

HPDC

/\,\&/

Vector Fabrics

Example: LAMMPS data dependencies

» Parallelization opportunity detected in loop over particles,
Inside loop over time steps

» Different dependency patterns shown in different colors

5T T Pairlt e i e s S e S e s s e e e e s e e
| R Shimial

Modifyzinitial_.. N.. N L. Loop_10536

M == Computedependency |§f ™= Memorydependency [¢f] B2 Streaming pattern

= Anti-dependency

Loop_10535 total loop carried transfer rate: 462 Mi transfers/s
2 streams (32.9 Ki transfers/s); 3 data dependency clusters (70.5 Mi transfers/s);

2 compute dependencies (392 Mi transfers/s); 3 anti- and output dependency clusters
v

e

17 | June 20, 2012 HPDC /\,\<> Vector Fabrics

Parallel performance prediction

» Estimate overhead from thread fork/join and synchronization
» Estimate execution schedule with loop-carried dependencies
Speedup of this loop: 3.9x, overall speedup: 2.4x

Partitions * Profile * 2D-Profile *| Architecture *' Help "
Partitioning candidates - Loop_10535 Data partitioning - Loop_10535
¥ CPUatz partitioning - verasks |

Number of threar . i_ﬂ“

Extra worker threads: 3
Thread creation delay: 33us

Speedup

#| Loop_10535 39

T i
AN

/
7 e a g
£y 7

<

18 | June 20, 2012 HPDC <~ Vector Fabrics

Conclusion

» Today’s gap: multi-processor machines are everywhere, yet multi-
threaded programming is difficult and error-prone.

» Proper tooling is required to avoid (data race-) errors and obtain
Insight in performance issues. Obtain such insight before spending
time on re-coding for parallelization.

» Various tools are available today. They do support real-world
application analysis.

19 | June 20, 2012 HPDC /\,\<> Vector Fabrics

Questions?

» Todays gap: multi-core CPUs and multi-processor machines are
everywhere, yet multi-threaded programming is difficult and error-
prone.

» Proper tooling Is requir,
Insight in performanc
time on re-coding for parallelizat

» Various tools are available to
application analysis.

data race-) errors and obtain
n such insight before spending

hey do support real-world

20 | June 20, 2012 HPDC /\,\<> Vector Fabrics

Thank you

Check for a free trial of concurrency analysis

<,\<\/ VectorFabrics

http://www.vectorfabrics.com/

