
Parallelization of C programs
through dependency analysis

Jos van Eijndhoven

jos@vectorfabrics.com

June 20, 2012

HPDC’12
Delft, The Netherlands

HPDC 2 | June 20, 2012

Discovering potential concurrency

PAREON

HPDC 3 | June 20, 2012

Presentation index

Multi-processors will further expand

Partitioning workload across multiple cores:

Data partitioning

Functional partitioning

Tooling for dependency analysis

Example: LAMMPS

Conclusion

HPDC 4 | June 20, 2012

Programming parallel computers

Multi-processor machines are all around us,
ranging from mobile to super-computers.

Multi-processor architectures are driven by
technology factors: increased integration
densities and power efficiency requirements.

Parallel (multi-threaded) programs are
required to exploit their capability.

However, parallel programming is difficult
and error-prone. Unfortunately, software
productivity already is a major bottleneck.

Distributed-memory architectures and
heterogeneous processors (GP-GPUs) add
further complications.

Application programmers need more help!

nVidia TEGRA 3

Intel Aubrey Isle (MIC)

HPDC 5 | June 20, 2012

Creating multi-threaded concurrency

Fork

Join

Main program thread

Concurrent computation threads

Main thread continues

Basic fork-join pattern, created through different
higher-level programming constructs

Creation of threads is application responsibility.
Operating System handles run-time scheduling
across available processors.

HPDC 6 | June 20, 2012

Parallelization – two partitioning options

for (i=0; i<4; i++) {

 A(i);

 B(i);

 C(i);

}

Source code: Sequential execution order:

A(0) A(1) A(2) A(3)

B(0) B(1) B(2) B(3)

C(0) C(1) C(2) C(3)

Fo
rk

Jo
in

Functional partitioning:

A(0) A(1) A(2) A(3)

B(0) B(1) B(2) B(3)

C(0) C(1) C(2) C(3)

Data partitioning:

Fork

Join

A(0) A(1) A(2) A(3)

B(0) B(1) B(2) B(3)

C(0) C(1) C(2) C(3)

HPDC 7 | June 20, 2012

Functional versus data partitioning

Data partitioning:

Allows a high degree of parallelization for loops with high
iteration count.

Allows good distribution of workload across (homogeneous)
processors.

Loop-carried data dependencies can severely impact
performance.

Functional partitioning:

Best for separation of workload across heterogeneous
processors.

Inter-function data dependencies typically converted into
buffered streams.

Choice is directed by data dependency patterns.

HPDC 8 | June 20, 2012

Example functional partitioning

int A[N][M];

while (..)

{ produce_img();

 consume_img();

}

produce_img()

{ for (i ...)

 for (j ...)

 A[i][j] = ...

}

consume_img()

{ for (i ...)

 for (j ...)

 ... = A[i][j];

}

Thread1: while (..)

 produce_img();

Thread2: while (..)

 consume_img();

Synchronize thread progress:

True dependency: consumer
must wait for valid data

Anti dependency: producer
must wait with over-writing until
after consumption

HPDC 9 | June 20, 2012

Function pipelining: synchronization

int A[N][M];

while (..)

{ produce_img();

 consume_img();

}

produce_img()

{ for (i ...)

 for (j ...)

 A[i][j] = ...

}

consume_img()

{ for (i ...)

 for (j ...)

 ... = A[i][j];

}

Thread1: while (..)

 produce_img();

Thread2: while (..)

 consume_img();

Channel ch;

produce_img()

{ for (i ...)

 for (j ...)

 write_int(ch, ...)

}

consume_img()

{ for (i ...)

 for (j ...)

 ... = read_int(ch);

}
Channel access functions

implement thread stall.

HPDC 10 | June 20, 2012

Pipeline dependency analysis

Potential pipelining
showed in colors,

with resulting Fifo's

HPDC 11 | June 20, 2012

Function pipelining: Channel APIs

Too many choices for channel-based communication:

Standard Java util.concurrent queue classes

Intel’s TBB (C++) queues

Linux 'pipes' and 'sockets'

OpenCL channels

OpenMAX IL for streaming media processing

MPI message-passing channels

. . .

Very different queue implementations:

Inter-thread, inside process memory context

Inter-process, inside shared-memory system

Inter-system, through device interfaces

NOTE: C++ STL queues are NOT thread-safe!

HPDC 12 | June 20, 2012

Example data partitioning

int sum = 0;

for (i=0; i<N; i++) {

 int value = some_work(i);

 sum += value;

}

 Distribute the workload over multiple cores.
 Each core handles part of the loop index space.

 int sum = 0;

#pragma omp parallel for reduction (+:sum)

for (i=0; i<N; i++) {

 int value = some_work(i);

 sum += value;

}

Workload scales nicely across multiple cores

Easy to write down , but hard to grasp all consequences!
 Highly dangerous, might cause extremely hard-to-track bugs! 

HPDC 13 | June 20, 2012

Application Analysis

HPDC 14 | June 20, 2012

Finding data dependencies

Vector Fabrics’ approach:

Compile program source code, compiler is adapted for
instrumentation.

Execute the instrumented program:
Traps all memory load/store operations:
match ld/st operations that address the same memory location

Relates ld/st operations with nested loop structure:
separate loop-carried dependencies from loop in-bound and loop out-bound
dependencies

Builds an execution profile (call tree), across file boundaries

Analyze loops with their data dependencies for parallelization
patterns

HPDC 15 | June 20, 2012

Recognize parallelization patterns

Analyze loops with data dependencies for parallelization patterns:

Reduction expressions

Induction expressions

Streaming dependencies, allowing data duplication and localization

Avoid considering ‘false’ memory dependencies:

Local variables on stack, duplicated through thread local storage

Re-use of memory locations through malloc() and free().

Relate data dependencies and patterns to locations in C(++) source
code for required code transformations.

HPDC 16 | June 20, 2012

Example: LAMMPS molecular simulator

Source code configured for sequential version.

About 187Klines of C++ source code in 636 files.

HPDC 17 | June 20, 2012

Example: LAMMPS data dependencies

Parallelization opportunity detected in loop over particles,
inside loop over time steps

Different dependency patterns shown in different colors

HPDC 18 | June 20, 2012

Parallel performance prediction

Estimate overhead from thread fork/join and synchronization

Estimate execution schedule with loop-carried dependencies

Speedup of this loop: 3.9x, overall speedup: 2.4x

HPDC 19 | June 20, 2012

Conclusion

Today’s gap: multi-processor machines are everywhere, yet multi-
threaded programming is difficult and error-prone.

Proper tooling is required to avoid (data race-) errors and obtain
insight in performance issues. Obtain such insight before spending
time on re-coding for parallelization.

Various tools are available today. They do support real-world
application analysis.

HPDC 20 | June 20, 2012

Questions?

Todays gap: multi-core CPUs and multi-processor machines are
everywhere, yet multi-threaded programming is difficult and error-
prone.

Proper tooling is required to avoid (data race-) errors and obtain
insight in performance issues. Obtain such insight before spending
time on re-coding for parallelization.

Various tools are available today. They do support real-world
application analysis.

Thank you

Check www.vectorfabrics.com for a free trial of concurrency analysis

http://www.vectorfabrics.com/

