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Abstract

VLIW processors are statically scheduled processors
and their performance depends on the quality of
schedules generated by the compiler’s scheduler. We
propose a multithreaded architectural support for
speculative trace scheduling in VLIW processors. In this
multithreaded architecture the next most probable trace
is speculatively executed, overlapping the stall cycles of
the processor during cache misses and page faults.
Switching between traces is achieved with the help of
special hardware units viz. Operation Sate Buffers and
Trace Buffers. We observe an 8.39% reduction in the
overall misprediction penalty as compared to that
incurred when the stall cycles due to cache misses alone
are not overlapped.

1. Introduction

In a Very Long Instruction Word (VLIW) processor
the micro-architecture of the processor is exposed to the
compiler and it generates schedules to exploit maximum
Instruction Level Parallelism (ILP) present in the code.
Two main methods of scheduling in VLIW processors
are: basic block scheduling and extended basic block
scheduling. Basic block scheduling is limited in its scope
of exploiting ILP because of small size of basic blocks.
(4-5 interdependent operations on an average in each
basic block.) In extended basic block scheduling, groups
of basic blocks are scheduled as a single unit. Extended
basic block scheduling can be categorized into following:
trace scheduling [8], superblock scheduling [15],
hyperblock scheduling [13] and decision tree scheduling
[10]. All these scheduling schemes suffer from the
drawback of issue slot wastage as explained in [9]. In [9]
we proposed a new scheduling scheme- speculative trcae
scheduling for VLIW processors which ensures minimal
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issue slot wastage. The traces are executed speculatively
based on their probability of execution. The penalty paid
on a misprediction is the length of the trace
Misprediction penalty depends on the frequency of
mispredictions and our speculative trace scheduling
scheme minimizes this frequency of mispredictions by
scheduling traces based on their probability of execution.
Our scheduling scheme gives a performance of 1.41x as
compared to decision tree scheduling of TriMedia
(TriMedia SDE version 2.0 was used for simulation
purposes). The results reported in [9] are reproduced here
(Table 1) for sake of completeness. These results assume
necessary hardware to roll back to the previous
checkpoint state of the processor on a misprediction.
Misprediction penalty is the length of incorrect trace and
additional cycles required for roll-back operation.
Misprediciton penalty incurred on a misprediction can be
reduced if the stall cycles of the processor during cache
miss or page faults are overlapped with the execution of
the next most probable trace. We propose a multithreaded
architectural support for this purpose in this paper. The
multithreaded architectural support reduces the overal
penalty suffered on a misprediction by overlapping the
stall cycles of the processor during page faults and/or
cache misses with the execution of the next probable
trace.

Table 1:Perfomance improvement of Speculative
Traces (predicted traces) relative to Decision
Trees (delayed branches) in TriMedia

Predicted Tracesvs
Benchmarks o
Decision Trees

008.espresso 1.5387
022.1i 1.3631
023.egntott 1.4009
072.sc 1.3677
Average 1.4170




The rest of the paper is organized as follows: section 2
gives details of related work in multithreaded
architectures. In section 3 we explain our multithreaded
architectural support for speculative trace scheduling with
simulation results given in section 4. We summarize
contribution of the work in section 5 and draw
conclusions.

2. Multithreaded Architecture

Traditionally, at the time of exceptions such as page
faults and cache misses, processor stalls until the data is
available which is clearly an overhead since cycles are
wasted. This overhead can be reduced considerably if the
stall cycles of the processor are overlapped with the
execution of the next probable trace. Once cache
misses/page faults are handled, processor resumes
execution of the original trace. On a trace misprediction,
processor starts the execution of the next probable trace
which is already ahead in its execution and takes fewer
cycles to complete. This reduces the effective
misprediction penalty suffered because it is already ahead
in execution to some extent during the stall cycles. We
propose a multithreaded architectural support to achieve
thisend in VLIW processors.

2.1. Related Work

Multithreading is the technology that allows several
threads to execute simultaneously in a processor. Main
objective of multithreading is to maximize processor
utilization in the absence of enough ILP to fully exploit
and utilize processor resources. Multithreading also help
in hiding processor stall cycles on a cache miss, page
fault and branch misprediction. Even if one thread suffers
for example, a cache miss, other threads continue to
execute while the cache miss is handled. In normal
processor architectures, processor resources (functional
units) are wasted in stalling and waiting for the data,
while the cache miss is handled. Some of the notable
research works in the area of multithreading are: [1], [2],
[11] and [14]. Two main types of multithreading as
differentiated by Dean Tullsen in [2] are Fine Grain
Multithreading and Simultaneous multithreading. Fine
grain multithreading allows only one thread to issue
operations in one cycle and attempts to maximize the
utilization of all functional units available in the processor
architecture. In Simultaneous multithreading more than
one thread can issue operations to the functional units
simultaneously in asingle cycle.

Threaded Multiple Path Execution (TME) [14],
Smultaneous Subordinate Multithreading (SSMT) [11]
and Speculative Data-Driven Multithreading (DDMT) [1]
have been proposed to enhance the performance of a

single thread by initiating micro threads from the parent
thread.

In TME [14], idle context threads of a multithreaded
processor are used to spawn and execute multiple
dternate paths of the primary thread. An architecture
platform is proposed in the paper [14], which has the
ability to execute multiple paths of the same thread as
well as different threads simultaneously. Whenever a
hardware context is available an alternate path from the
primary thread is spawned a a suitable checkpoint
(branch) which executes simultaneously with the primary
thread. When the branch is resolved the thread with
mispredicted path is squashed and the hardware context is
made available for alternate path of the primary thread. If
primary thread turns out to be mispredicted then primary
thread is squashed and the correct aternate path is made
the primary thread. From this new primary thread
aternate path is spawned whenever a hardware context is
available to executeit.

In SSMT [11], severa microthreads are micro-coded
and kept stored in a speciad microRAM in the
architecture. These microthreads are spawned at certain
predefined events in the processor. Each of this
microthread is associated with a microcontext and it does
not affect the cache behavior of the primary thread
because this microthread is stored in a microRAM. These
microthreads assist the primary thread to improve the
branch prediction accuracy, cache hit rate and prefetch
effectiveness.

In DDMT [1] data driven threads (DDT) are spawned
speculatively to hide stall cycles of the processor during
cache misses and branch mispredictions. DDTs are
formed with the help of algorithm proposed in the paper
and these DDTs execute speculatively with the primary
thread. In DDMT long latency load operations and
frequently mispredicted branches are termed as critical
operations. Critical operations are identified in the
primary thread and then these critical operations serve as
the trigger points for the DDT. DDTs are executed
speculatively, consequently, results do not change the
architecture state of the processor. The architecture state
of the processor is changed when results of these DDTs
are integrated into the parent thread.

3. Proposed Architecture Support

All  the schemes mentioned above employ
multithreading for superscalar processors and aim at
enhancing the performance of the main control flow by
executing micro threads from the same primary thread or
dternate paths. In TME, alternate paths of the primary
threads are executed simultaneously with the primary
thread. The scheme, which we propose in this paper, is



different from TME in the sense that the next probable
trace is executed only during cache miss or a page fault.

3.1. Mathematical M odel

We propose a multithreaded architectural support for
speculative trace execution on VLIW architectures. To
keep the hardware architecture simple complying with the
VLIW philosophy (hardware simplicity) we execute the
next probable trace of the application during a cache miss
or a page fault when the processor has to stay idle for
multiple cycles till the data is available. Several paths are
not executed simultaneously. Execution of the next
probable trace helps hide the stall cycles of the processor
by doing useful work from the next probable trace. SSMT
and DDMT are different from our scheme because these
schemes enhance performance of the primary thread by
spawning microthreads from within the primary thread.

Our speculative traces scheduling scheme [9] splits the
decision tree into its corresponding traces. Each trace is
annotated with its probability of execution obtained from
profile information gathered through prior runs of the
application. Consider a tree split into its “n
corresponding traces. Trace 1 is the trace with the highest
probability of execution. Let “L;” denote the length of
each trace “i”, “E” the execution count, “p” the
probability of execution, “s” the total number of stalls
suffered and “R’ the next PC misprediction rate of
dynamic branch predictor. The misprediction penalty
(MP) suffered when the stall cycles of the processor are
not overlapped with the execution of the next probable
traceisgiven by: .

MPwithoursaiiuse = >3 Ei * Li * pi * R 1)

Misprediction penalty when the sal cycles of the
processor during cache misses and page faults are
overlapped with the execution of the next probable trace
isgiven by: n

MPwithsaiuse = 2.0 Ei* (Li—s.)*p* R (2

Vireesi=1

The reduction in the misprediction penalty by overlapping
the stall cycles of the processor with useful execution of
the next probable trace is given by:

PenaltyReduction = MPwgaiuse - MPwithoursiaiiuse — (3)

Reduction in misprediction penalty when the stall cycles
of a trace are overlapped with the execution in the next
probable trace isillustrated in figure 1. Figure 1(a) shows
execution of two traces when stall cycles of the processor
during cache miss and page faults are not overlapped with
execution of next trace. The misprediction penalty
suffered is the whole length of trace T1. Figure 1(b)
shows the execution of the same trace T1 (of figure 1(a))

when stall cycles of the processor are overlapped with the
execution of the next probable trace T2. The penalty
incurred on trace misprediction is reduced in this case.

3.2. Details of Hardware Support

The hardware support proposed by us is set to context
of a typical VLIW processor as shown in figure 2.
Architectural support that facilitates multithreaded
execution of traces is highlighted as shaded regions in
figure 2. When the execution of the application starts,
multiple traces are stored in the trace buffers. Each trace
is associated with a hardware thread. The trace buffers are
located in the stage following the decode unit (figure 2)
so the traces stored in them can be issued to the functional
units immediately on a stall. The trace with the highest
probability of execution is issued for execution first.
During execution, it may incur a cache miss or a page
fault leading to processor stalls. In our scheme, whenever
processor incurs stalls due to cache misses and/or page
faults, it starts execution of the next probable trace while
the cache miss and/or page faults (exceptions) are
handled in the background. Once the processor returns
from these exceptions, execution is switched back to the
original trace. To achieve this functionality we make use
of two hardware units, Operation state buffer (OSB) and
Controller in our architecture as shown in shaded region
of figure 2. The block diagram of the OSB is shown in
figure 3. It is used to send “exception and switch to
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Figure 1. Reduction in misprediction
penalty

another trace” signa to the Controller. Tom Conte et a
has proposed a structure named Control State Buffer for
fast interrupt handling in VLIW processors in [4]. The
OSB used in our architecture though similar to the one
proposed in [4], it has been modified and adapted for
speculative scheduling. It has been enhanced with Trace
Label entry and a Trace Pointer to identify the trace of the
operation. OSB is a circular buffer with Head and Tail
pointers. A specia pointer is present which points to the
excepted trace. This pointer is named the Trace Pointer.
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Figure 2: Block diagram of the architecture support proposed

Trace pointer maintains a list of traces, which are under
execution in the processor. The list of trace labels as
maintained by the trace pointer is shown in figure 4. OSB
stores the PC value and the trace label of the instruction
under execution in the processor. The other entries in the
OSB are execute bit and except bit for each operation that
gets executed in the machine. When the system initiates,
head, tail and the trace pointers point to the first location
of the OSB. When a VLIW instruction is issued its PC
value and trace label is written into the OSB on the
location pointed to by the tail pointer. The tail pointer is

OpSequence
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Figure 3: Operation state buffer

then incremented to point to the next location. The OSB
address of the entry is communicated back to the issue
unit and then each operation in the VLIW instruction is
issued with an attached buffer address and an operation
identifier. During execution of operations, corresponding
execute bit and except bits for each operation are set
according to the execution status of the operation. If
operation suffers a stal during execution, the

corresponding except bit is set and in the next cycle thisis
communicated back to the controller to start the execution
of the next trace. If the operation executes successfully
then the corresponding execute hit is set and the results
are updated in the register file. At the start of each cycle,
the entry pointed to by the head pointer is checked. If the
execution of all the operations corresponding to the entry
pointed to by the head pointer is complete with no
exceptions incurred, the results are updated in the
working set of registers and the head pointer is
incremented to point to the next entry. When the head
pointer is incremented, previous entry is cleared and

Tracﬁ Pointer
Trace 4
Trace 3
Trace 2
Trace 1
Figure 4: Stack of traces

maintained by the Trace pointer.

made available to the next instruction that is issued to
execute. The trace label of the entry cleared is aso
removed from the list maintained by the trace pointer.

On an exception i.e. when any except bit of an entry is
set an exception is raised and a signal is sent to the
controller to switch to another trace. As soon as the
exception is raised, al the entries of the OSB
corresponding to the excepted trace are checked and the
results of the operations, which have completed their
execution, are forwarded to the register file. The
operations, which are midway in their execution process,



are saved and issued when the processor returns from
cache miss or a page fault. The trace pointer is updated to
point to the excepted trace and the execution of the next
probable trace is started which is present in the trace
buffer. As soon as the exception is handled the processor
resumes execution of the original trace. To resume
execution of the origina trace, processor suspends
execution of the current trace and switches back to the
trace pointed to by the trace pointer, which is the original
trace. Additional cycles have to be accounted for
switching traces as separate hardware threads and it
depends on the hardware implementation. A register file
is associated with each trace, which we call as working
register file. A set of shadow registers is a'so maintained
which is common to all traces. Shadow registers are used
to retrieve the state of the processor on a trace
misprediction. Shadow registers maintain the state of the
processor at correctly executed trace boundaries. A trace
uses working set of registers to compute the operations
included in it. When the decision points at the tail of the
trace assert correct prediction, its working set of registers
is committed into the set of shadow registers. After the
trace is committed all the other traces (of the same
decision tree) that are currently in the execution stage are
flushed and the execution of the next trace of the next
decision tree is initiated. On a trace misprediction,
contents of the set of working registers of the
corresponding trace are discarded. A signal is sent to the
controller, from the OSB, to switch to the next probable
trace (which is aready ahead in its execution) and the
entries of the OSB with the mispredicted trace label are
discarded. The entry of the mispredicted trace is also
removed from the list maintained by the trace pointer. To
take care of the memory writes, a set of memory buffers
is maintained as shown in figure 2. These memory buffers
are present for each trace and memory writes are done to
these buffers only. Subsequent memory read operations
for the writes are done from the memory buffers. If the
trace is found to be correctly predicted then the memory
buffers are committed to the memory. On a misprediction,
these memory buffers are discarded and the execution of
the next most probable trace proceeds. As the execution
of thistrace is aready in progress using stall cycles of the
(previous) most probable trace, it is ahead in its execution
and thus effective misprediction penalty is reduced.

4. Simulation and Results

Simulations were carried on Specint92 benchmarks
and compiled using TriMedia compiler with optimiztion
level O3 and then simulated on the TriMedia simulator.
Simulations report the statistics of the number of data

cache stalls incurred for each decision tree. With the help
of these datistics, the performance is evaluated using
equations 1, 2 and 3. The statistics of the data cache stalls
obtained from the simulations are plugged into the
mathematical model equations to estimate the
performance gain that can be obtained by the
multithreaded  architecture proposed in this work.
Simulation results are given in Table 2. As is evident
from the results, there is a reduction in the overal
misprediction penalty when the stall cycles of the
processor are overlapped with the execution of the next
probable trace. The performance gain varies among the
three benchmarks that are simulated. Highest
performance gain is achieved in 023.egntott because this
application does not show much data locality and the total
number of data cache misses is very high in this
application. Least reduction in penalty is shown by 022.1i
because of the fact that the total number of cache misses
in this application is very low. Overal we see a net
performance gain.

This scheme can considerably increase the
performance of the applications which show large number
of cache misses. In certain media application where the
cache stall cycles are as high as 20-40% of the application
execution time the net performance can be improved
considerably. The performance gain reported in this paper
is conservative than that can actualy be obtained by
overlapping the stall cycles of the processor on cache
misses/page faults because we have not smulated the
overlapping of page faults in our work. Only cache
misses have been considered to evauate the advantage in
the misprediction penalty achieved by overlapping the
stall cycles of the processor with the execution of the next
probable trace.

4. Conclusion

The performance of the VLIW processors can be
improved considerably by dividing the application into
multiple traces and using dynamic branch prediction for
scheduling. By speculatively scheduling traces based on
their probability of execution, the performance obtained
by us is approximately 1.41 times the original TriMedia
performance. A considerable reduction in the
misprediction penalty was achieved by overlapping the
stall cycles of the processor by useful execution in the
next probable trace during cache misses alone. We
proposed a multitreaded architectural support in this
paper that enhances VLIW architectures to utilize the stall
cycles. An average reduction of approximately 8.39%
was observed in the overall misprediction penalty as
compared to the penalty incurred when the stall cycles
due to cache misses are not overlapped with execution of
the next probable trace. Our results are conservative



because we have considered only cache misses in our
simulations and ignored stall cycles due to page faults.
The overall average performance is approximately 1.44
times the original TriMedia performance.
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Table 2: Reduction in branch misprediction penalty achieved by overlapping the stall cycles of
processor during cache misses and page faults with the execution of the next probable trace.



