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Abstract 

In the world of complex SoCs for consumer applica-
tions, multiprocessor architectures usually deploy 
caching techniques to alleviate the cost of data com-
munication between processing elements. In this appli-
cation domain, the characteristics of streaming appli-
cations play a dominant role in the design of the multi-
processor architectures. These characteristics not only 
influence the design at SoC level, but also permeate 
the design of lower level blocks, such as caches. 

This paper proposes three novel techniques for data 
caching in multiprocessor streaming architectures. 
These techniques exploit the combination of mecha-
nisms from the domains of stream caching and cache 
coherency, optimizing the effectiveness of data caches 
in a streaming multiprocessor context. 

Our first implementation targets cache systems in a 
multiprocessor architecture for high-definition MPEG 
decoding, where six function-specific processors com-
municate through shared embedded SRAM. Simulation 
results demonstrate the effectiveness of the presented 
techniques, even though the caches are of very small 
dimensions, i.e., 0.12 mm2 in 0.12µ technology. 

1. Introduction 

The convergence of consumer applications in the 
domestic, automotive, and mobile domains leads to 
ever more complex products, which need to perform an 
increasing number of different applications. A com-
mon denominator among all of these applications is 
that they process data streams, such as audio, video, 
voice, and combinations thereof. 

In order to provide cost-effective solutions for the 
processing requirements of these applications, con-
sumer electronics vendors are deploying complex 
SoCs. In the consumer domain, these complex SoCs 
generally are based on multiprocessor architectures to 
balance hardware cost, power consumption, and deliv-
ered performance. Oftentimes, these multiprocessor 

SoCs rely on shared memory for inter-processor com-
munication. 

With progressing IC technology, the cost of trans-
port of data has become a dominant factor in the SoC 
design [1]. To compound this difficulty, the bandwidth 
and latency requirements on this shared-memory in-
crease with the rising application demand for higher 
resolution and multiple channels. Therefore, architects 
have devised mechanisms that aid in alleviating the 
mentioned transport difficulties. 

One such technique that is widely applied in SoC 
designs is caching, e.g., virtually all CPUs incorporate 
caches to mitigate latency and bandwidth requirements 
to memory for data and instructions. Caches have been 
deployed for decades in a wide range of systems [2]. 
Many different forms of cache designs have been de-
vised to address the diverse characteristics of different 
application domains. 

Consumer electronics products are centered on me-
dia applications, such as digital audio processing, 
speech processing, digital video coding, image en-
hancement, etc. A general characteristic of media-
processing applications is stream-based processing. 
This characteristic can be exploited in the design of 
caching systems [3][4]. 

Despite the maturity of the field of caching tech-
nology, this paper presents three new techniques to 
enhance the effectiveness of caches in a stream-based 
context. Section 3 outlines the generic processor ‘shell’ 
that is key in reducing processor complexity and de-
coupling the processor from the transport network. 
Relying on the explicit synchronization mechanism 
supported by the processor shell, Section 4 introduces 
our concepts for caching streaming data in a multi-
processor environment. Section 5 outlines a concrete 
implementation of the described techniques in tiny data 
caches within the processor shell. This is followed by a 
simulation setup in Section 6 that demonstrates the 
effectiveness of the presented techniques. 



 

2. Related work 

With the advent of media processing, caching tech-
niques optimized for streaming data have received an 
increased attention in the form of stream buffers [5], 
stride-prediction tables [6][7], and stream caches [3]. 
Oftentimes, these techniques are applied to traditional 
(multi-way) associative caches. The canonical form for 
selecting victims in a fully loaded associative cache is 
the least-recently used (LRU) mechanism [8]. Such 
victimize strategies are oblivious to the stream associ-
ated with cached data, causing cache contention when 
the processor accesses multiple data streams through 
its cache. To some extent, techniques have been de-
vised to avoid contention by extracting stream 
information from the processor’s access pattern and 
separate cache blocks accordingly [9]. Section 4.1 out-
lines a cache organization that exploits the model of 
computation of media-processing architectures. The 
proposed cache organization is more cost-effective 
because the operation of the cache fits well to such a 
dataflow-oriented model of computation [10]. 

One of the notoriously difficult problems in the 
field of cache technology for inter-processor commu-
nication is cache coherency [11]. This paper combines 
the—traditionally separate—domains of stream cach-
ing and multiprocessor cache coherency. In Section 
4.2, we apply an explicit dataflow synchronization 
scheme [10][12] to control cache coherency and pre-
fetching, fully transparent to the application tasks. This 
results in a simpler and more efficient implementation 
than generic coherency mechanisms such as bus 
snooping [11]. In addition, it avoids the communica-
tion overhead of for instance a write-through architec-
ture [5]. 

Processors generally apply caches to reduce the la-
tency to access data in memory. For streaming applica-
tions, prefetch methods are deployed to predict upcom-
ing I/O operations and further reduce memory access 
latency [3]. State of the art prefetch techniques address 
two problems. Firstly, access to a stream must be rec-
ognized by matching the addresses of a series of I/O 
operations and extrapolate this to an expected future 
I/O access. This recognition of the stream access pat-
tern is troubled by interleaved I/O operations that do 
not belong to the stream. Secondly, once a prediction is 
found that is not available in the cache, the correspond-
ing block of data needs to be fetched from memory. 
Equivalent to normal cached data, prefetched data is 
typically inserted into the cache according to the same 
victimize strategy, such as LRU. 

Literature on prefetch methods focuses on solving 
the first problem of predicting future I/O operations 
[6][7]. Little attention has been given to the second 

problem of explicitly selecting cached data to be re-
placed. When the prefetch data enters the cache, it may 
replace data that is still valuable. Therefore, prefetch-
ing may be the cause of further cache misses. Section 
4.3 proposes a technique that reverses this traditional 
prefetching approach by first predicting cache loca-
tions for which the cached data is not expected to be 
further used. The cache subsequently initiates prefetch 
actions to fill precisely these cache locations—without 
overwriting valuable cached data. 

3. Processor shell 

Figure 1 shows the mapping of a streaming applica-
tion onto parallel processors. The application tasks 
communicate through streams of data, mapped onto 
cyclic buffers in shared memory. Processors communi-
cate through their processor shell: a hardware module 
that offers generic services to the processor. These 
services encompass among others data transport and 
inter-task stream synchronization. The shell absorbs a 
complex part of the system architecture, and thereby 
their existence simplifies processor design. The shells 
of different processors can be instantiated from a sin-
gle template. 
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Figure 1. Application tasks mapped onto par-

allel processors. Shells handle inter-processor 
communication via stream buffers in shared 

memory. 

Processors transport all media data to and from 
their streams through read and write operations. The 
shells internally compute the actual address into a cy-
clic stream buffer in shared memory and access the 
data. Thereto, the shells provide a read and write inter-
face. This interface hides aspects such as the width of 



 

system data paths, data alignment in memory, and cy-
clic buffer addressing. 

Application tasks mapped onto one or more proces-
sors that explicitly execute a dataflow synchronization 
mechanism [10][12]. Through this mechanism, produc-
ing and consuming application tasks synchronize inter-
task data transport. The synchronization consists of 
inquiry and commit actions that manage information 
on the amount of valid (produced) data and the amount 
of empty room (consumed data) in memory that is 
shared between the application tasks. The application 
tasks initiate these synchronization actions, independ-
ently from data I/O. 

The shell implements the inquiry and commit syn-
chronization services. Each shell locally administers 
the buffer filling of all streams associated with tasks 
executing on the shell’s processor. Shells of different 
processors exchange messages to keep their buffer 
administration up to date in such way that inquiry and 
commit actions of the processor can be served 
promptly and locally. 

4. Streaming data cache 

In general, caches alleviate memory latency and 
bandwidth restrictions. Caches may be introduced into 
the system design in several places, even at once. In 
our current design as depicted in Figure 1, the intention 
is to have the shells close to the processors, so that the 
latency between the shell and processor is small. How-
ever, the memory is shared and so will have stronger 
latency and bandwidth restrictions. Therefore, we en-
dow our design with caching functionality. 

Caches can exploit the streaming nature of our tar-
get application domain so well that they can be kept 
extremely small. Therefore, we incorporate caches in 
each shell. We chose to separate the read and write 
data path to more easily support parallel read and write 
requests, for instance from a pipelined processor. 

The following subsections detail the three most im-
portant and novel concepts applied in these caches. 
The remainder of this paper focuses on read accesses 
to the read cache, as these are the most challenging 
with respect to cache coherency and prefetching. How-
ever, the proposed techniques apply equally well to 
handling write requests. 

4.1. Cache indexing through stream IDs 

For each read or write access, the processor tasks 
pass a task and port identifier. The port ID has local 
scope for each task. The shell combines the task and 
port ID to form a so-called stream identifier. 

Stream buffers in shared memory compete for 
shared resources, such as cache memory locations. The 
processor tasks are I/O intensive, requiring efficient 
cache behavior. Thus, contention on the cache re-
sources leads to large and unpredictable task execution 
delays. To limit cache contention, the shell indexes its 
read or write caches through the stream ID, effectively 
decoupling the caching of stream content of different 
streams. 

The stream ID can be used to select a row of cache 
blocks. However, we chose to share cache rows over 
different tasks to limit the cost of cache memory in the 
shell. This choice only leads to an overhead in switch-
ing between tasks, as tasks execute sequentially on the 
processor in a time-shared fashion. Thus, the shell only 
uses the port ID to select a cache row, and cache rows 
are shared over equivalent port IDs of different tasks. 
Moreover, instead of directly addressing of the cache 
row by the port ID, the shell applies a hashing function 
by which it translates the port ID into a potentially 
smaller number of cache rows. Figure 2 depicts this 
cache organization. We chose the hashing function to 
be a simple modulo operation over the number of 
rows. This way, a single task may share a single cache 
row over multiple task ports. This is cost-effective 
when for instance all media data is read through the 
first task port, the task only occasionally reads a burst 
of meta data from its second task port, and both ports 
are mapped to the same cache line. Sharing the cache 
row then avoids the hardware cost of a full row of 
cache locations for the second task port. 
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Figure 2. Addressing cache locations through 

port_id and address. 

Figure 2 depicts a direct-mapped cache organiza-
tion. This means that every port ID and address com-
bination can only map to a single cache location. 
Within a cache row selected through the port ID, a 
cache block is indexed through the lower bits of the 
I/O address. Thereto, the number of cache blocks in the 
row is restricted to a power of two. This results in a 
simple and cost-effective cache implementation in the 
processor shell. Clearly, such a scheme can be ex-



 

tended to more general set-associative cache organiza-
tions, where the stream ID selects a cache row and the 
lower bits of the address select a set of cache blocks. 
The actual data word is then further located through 
tag matching on the address. 

4.2. Cache coherency through synchronization 

For processing streaming data, several groups work 
on processors with special stream cache architectures 
to improve the data transport to/from memory [3-7]. In 
any multiprocessor system that deploys caches to ac-
cess shared memory, cache coherency must be en-
forced to ensure that each processor reads properly 
updated data values from shared memory. When a 
processor reads data from a stream buffer through a 
private cache, the processor needs to ensure validity of 
the read data.  

Synchronization between tasks is required for inter-
task signaling of delivery or consumption of data. The 
inquiry/commit synchronization scheme operates at 
byte granularity. A major responsibility of the cache is 
to hide the global interconnect data transfer size and 
data transfer alignment restrictions from the processor. 
As a result, the same memory word may be stored si-
multaneously in the caches of different processors, and 
invalidate and dirty information must be handled in 
each cache at byte granularity. 

In a multiprocessor system designed for streaming 
data, these cache coherency issues can be solved in a 
specialized and efficient way. The inquiry/commit syn-
chronization mechanism explicitly controls cache co-
herency transparently to the processor. The shell’s 
cache coherency mechanism builds on three key ob-
servations: 
1. The access window on stream data, which is 

granted to a task port by a successful inquiry ac-
tion, is guaranteed to be private. 

2. Additional inquiry requests extend the access win-
dow, obtaining new memory space from a prede-
cessor in the cyclic buffer. 

3. Local commit requests reduce the access window, 
leaving new memory space to a successor in the 
cyclic buffer. 
Figure 3 depicts the fixed-size cyclic memory space 

used as communication buffer. The rotation arrow in 
the center shows the direction in which a producing 
task A and a consuming task B move their access 
points ahead with each commit action. A commit ac-
tion by the producer reduces the access window on 
empty room in the buffer, while the producer extends 
this access window with a successful inquiry action. 
Equivalently, the consumer extends its access window 

on valid data through inquiry actions, and reduces the 
access window by committing already consumed data. 
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Figure 3. Basic stream mapped to a finite 

 cyclic buffer. 

The inner circle in Figure 3 depicts the memory 
words in the buffer. The producer moves its access 
point (its write pointer) from A1 to A2 by committing 
newly written data. The consumer may subsequently 
extend its access window into this new data range. To 
ensure cache coherency, the producer’s write cache 
must have flushed memory words 4, 5, and 6 to mem-
ory, and the consumer’s read cache must invalidate 
cached memory words with these same addresses. 

Generalizing the situation of Figure 3 leads to the 
following implementation. According to the third ob-
servation, dirty data in the cache that corresponds to 
the memory space in the reduction interval needs to be 
flushed to the cyclic buffer to make the local data 
available for other processors. Thus, on a commit ac-
tion, the write cache flushes all cached data words 
whose tag addresses overlap with the address range of 
the producer’s previous write pointer to its updated 
write pointer after the commit action. 

According to the second observation, data in the 
cache that corresponds to the new memory space pos-
sibly needs invalidation. A subsequent read action on 
such a cache location then results in a cache miss, upon 
which the cache loads fresh valid data from the cyclic 
buffer. Thus, on a consumer’s inquiry action, the read 
cache invalidates all cached data words whose tag ad-
dresses lie between the current write pointer and the 
write pointer at the last inquiry action. The consumer’s 
shell computes the write pointers from its local buffer 
administration. Clearly, discrepancies in buffer ad-
ministration between the producer and consumer shells 
due to synchronization messaging delays do not affect 
functional correctness. 



 

4.3. Prefetching on dismissed cache locations 

Traditionally, prefetching algorithms decide to 
fetch data that is predicted to be needed in the direct 
future, disregarding the value of data already present in 
a fully loaded cache. Thus, these algorithms may vic-
timize valuable data. The processor shell addresses this 
problem by carefully selecting when to execute a pre-
fetch. Instead of first predicting future I/O operations, 
the shell first predicts dismissing of cached data that is 
not expected to be further used. Subsequently, it pre-
dicts an I/O operation that maps onto the dismissed 
cache location. Finally, the shell fetches the data to 
replace the dismissed data in the cache. Thereby, the 
shell reduces the risk of overwriting cached data that is 
still needed in the cache. 

Prefetching in the processor shell is initiated by 
read and invalidate requests. Apart from sporadic ran-
dom accesses within the acquired window of valid 
data, processors are expected to access data in a 
streaming fashion. Thus, we assume that subsequent 
reads belonging to the same stream address a contigu-
ous range in memory in linear order. This streaming 
behavior allows the shell to cost-effectively embed 
prefetching caches. 

If a read action within a stream buffer accesses the 
last data word in a cache block, the shell assumes that 
all data of the block has been read and can be dis-
missed. At this event, the shell prefetches a data block 
from a new location in memory that fits to the cache 
location of the dismissed cached data. The shell pre-
fetches the next higher address from the address of the 
dismissed data that fits the cache location. As result of 
this choice, once the prefetched data arrives, it will be 
stored automatically at the location of the dismissed 
data. As stream accesses occur in linear order, the 
stream is expected to access the prefetched data in the 
near future. 

Invalidate requests on cached data to control cache 
coherency are triggered by processor inquiry actions. 
These invalidate events mark locations in the cache to 
be considered as empty. Invalidates are caused by a 
task that produces new data on the stream. By inquir-
ing if a certain amount of data is available for con-
sumption, the reading processor indicates that it ex-
pects to access this new data in the near future. There-
fore, the processor shell issues a prefetch for those 
cache locations marked invalid.  

Additionally, the shell prefetches new data for all 
cache locations within the selected cache row that fall 
outside the range of valid data in the stream buffer. 
The latter is of special importance to reduce the latency 
of updating a cache row immediately after a task 
switch in case that cache rows are shared between 

stream buffers of different tasks. For these dismissed 
cache locations, the shell prefetches from the memory 
addresses that fit the dismissed cache location and are 
closest to the current point of access. 

The write cache applies a similar strategy by flush-
ing cached data as soon as it predicts that this data will 
not be accessed anymore. The write cache initiates 
such a preflush when a write access moves to a next 
word. With a streaming write behavior, the previous 
word will not be further accessed, and its cache loca-
tion can be made available for expected future. 

5. Implementation 

We deploy the caching techniques in a multiproc-
essor architecture where a number of function-specific 
processors together execute a dataflow-style applica-
tion. Processors communicate through stream buffers 
allocated in shared embedded SRAM. Each processor 
has its own processor shell that handles all data access 
and buffer administration of the streams associated 
with the application tasks that are mapped onto the 
processor. 

Figure 4 depicts the internal architecture of the read 
module inside the processor shell. In addition, the 
processor shell includes a similar write module, a syn-
chronization module that maintains administration of 
stream buffer filling, and a task scheduler. The shell 
implements a control interface to allow access to pro-
grammable registers—such as the stream and task table 
entries in Figure 4—for system configuration. 
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Figure 4. Read unit inside the processor shell. 

We deploy the read and write caches in a multi-
processor architecture that targets dual-stream, high-
definition MPEG-2 encoding and decoding [10]. In 
this setup, the processor shell is targeted to execute at 
around 150 MHz, providing an average 4-cycle latency 



 

for single word read and write transactions on a dual 
128-bits bus to on-chip SRAM. Initial synthesis results 
indicate that a typical instantiation of the processor 
shell template occupies 0.2 mm2 in CMOS12 technol-
ogy, out of which the read and write modules absorb 
approximately half of the total shell size. 

5.1. Read requests 

The Read Control component in Figure 4 handles 
the read requests from the processor. The processor 
communicates the port ID and the requested number of 
bytes to read through a handshake protocol. The Read 
Control component subsequently indexes the task table 
with the port ID and obtains the index into the stream 
table. The stream table administers the current byte-
level access point (the read pointer) into the communi-
cation buffer, as well as the size of the buffer for cyclic 
addressing. Based on the current access point and the 
requested number of bytes, the Read Control compo-
nent generates parallel requests to the cache at the level 
of memory words. A memory word matches the bus 
and memory data width, and is for instance 128 bits 
wide. 

The Read Cache component indexes the cache us-
ing the port ID, and performs a tag match on the ad-
dress passed by the Read Control component. On a 
cache miss, the cache issues a read request to the 
Transport Send component. The Transport Send com-
ponent places the cache location of the requested data 
in a queue, to be accessed by the Transport Receive 
component upon receiving the data from the memory. 
Received data words are passed through the cache to 
the Barrelshift component. The barrel shifter combines 
data from potentially multiple cache words and left 
shifts the result before acknowledging the processor 
read request. 

The Transport Send and Receive components are 
separated to enable split-transaction requests, in which 
the Transport Send component can issue a new request 
every bus cycle without waiting for the requested data 
to return. This pipelining of bus requests greatly re-
duces the latency for multiple transactions, e.g. on un-
aligned read requests from the processor that span mul-
tiple memory words, or invalidate actions that triggers 
multiple prefetch requests. 

5.2. Update/Invalidate requests 

The synchronization module in the shell signals 
update/invalidate events to the cache, triggered by in-
quiry and commit actions from the processor. Update 
events consist of a port ID and the size in bytes of a 
corresponding commit action by the processor. The 

Read Control component uses this information to up-
date its current read pointer in the stream table. 

An invalidate event is accompanied with the port 
ID and the current buffer filling of the requested 
stream. Upon such invalidate requests, the Read Con-
trol component computes an address range of cache 
words that potentially need to be invalidated, based on 
the current buffer filling and the filling at the previous 
inquiry action—as maintained in the stream table. The 
cache matches the tag address of all cache locations of 
the indicated stream and invalidates cached data words 
that lie within the specified address range. 

5.3. Prefetch requests 

The shell initiates prefetch requests on both read 
and inquiry (invalidate) events from the processor. To 
this end, the Read Control component passes an ad-
dress range of available data words in the communica-
tion buffer to the cache through the Prefetch/Invalidate 
interface. The cache subsequently issues prefetch re-
quests for each cache location that is invalidated, or 
has a tag address behind the current read pointer or 
outside the range of valid data. 

6. Results 

This section gives two experiments to show the ef-
fectiveness of the proposed caching techniques on a 
heterogeneous multiprocessor architecture [10]. The 
experiments execute on a cycle-accurate, bit-true Sys-
temC [13] model of the processor shell and communi-
cation network. The application tasks execute on 
highly abstract models of function-specific processors. 
While the generic caches of Section 5 allow arbitrary 
access patterns, the simulation results are based on our 
multiprocessor MPEG implementation that exhibits a 
largely linear access pattern for inter-task communica-
tion. 

6.1. Dual-task discrete cosine transform 

We present an example study into the behavior of 
the read and write caches of a hardwired processor that 
computes the inverse discrete cosine transform (IDCT) 
for two different MPEG-2 streams. The IDCT proces-
sor executes the two IDCT tasks in a time-shared fash-
ion. Each task reads coefficient data from its input 
stream, and produces blocks of pixels on its output 
stream. 

The IDCT read and write caches connect to sepa-
rate read and write buses of 128 bits wide to on-chip 
memory. The processor strictly reads and writes in a 
streaming fashion. The IDCT processor has two 32-bit 



 

data ports to its shell, on which it issues variable-
length read and write requests. It is the task of the shell 
to perform address generation. The processor has no 
idea on memory alignment issues—the read and write 
requests may occur on an unaligned address. In this 
setup, the shell read cache is sized to contain four bus 
words of 128-bit, which are shared by the input 
streams of both IDCT tasks. The write cache contains 
only two bus words, shared by the output streams of 
both tasks. Thus, total cache size of the shell is 96 
bytes. 

Table 1. Dual stream DCT read/write cache 
behavior. 

No cache Cache, no pre-
fetch / preflush 

Cache, prefetch
 / preflush 

 

Rd Wr Rd Wr Rd Wr 
# Misses  
(x 103) 

- - 466 274 0 0 

# Transfers 
(x 103) 

1117 994 466 428 532 428 

Average 
latency 

11 3 7 3 2 3 

 
Table 1 shows the actual cache behavior. The ex-

periment shows that the caches dramatically reduce the 
bandwidth requirement on the communication net-
work. Additionally, the prefetch mechanism reduces 
the average latency from 11 to 2 cycles. The reduction 
in write latency by issuing preflush actions is not visi-
ble as the simulation model immediately acknowledges 
a write request—even before the data is written in the 
cache. Even without a write cache, the shell contains a 
one-word write buffer to hide the latency of accessing 
the write bus from the processor. 

Despite the tiny cache sizes, the (shell of the) IDCT 
processor experienced not a single read cache miss as 
result of the automatic prefetch, although some reads 
had to wait a few cycles because the prefetch did not 
yet complete. The write cache allocates on a write-miss 
(does not fetch). Correspondingly, the preflush empties 
dirty cache words to memory, so that the allocate not 
once had to delay for first flushing a dirty cache word. 

6.2. Multiprocessor MPEG-2 decoding 

To show the effectiveness of the caches as part of 
the generic processor shell, we chose MPEG-2 decod-
ing as representative application. We partitioned the 
MPEG-2 decoding application into six processors: 
DMA, variable-length decoding, picture and slice de-
coding, run-length decoding and inverse quantization, 
inverse discrete cosine transform, and motion compen-
sation. These processors are vary widely in I/O access 

patterns and streaming behavior. This spectrum of be-
haviors is representative for the entire application do-
main. 

Each processor has its own shell and communicates 
through stream buffers in on-chip memory. The refer-
ence pictures for motion compensation are accessed 
from off-chip memory and do not pass through the 
shell. The cache sizes vary with the number of input 
and output streams to the processors. Each input 
stream is assigned a cache line of maximally 4 bus 
words, while each output stream is assigned to a cache 
line of 2 bus words. 

Table 2. Cache influence on MPEG-2 execution 
time. 

 No caches Caches, no 
prefetch / 
preflush 

Caches, prefetch 
/ preflush 

tennis 100 75 55 
teeny 100 73 52 
tech 100 74 64 
oslo 100 73 61 
 
We decode a number of MPEG-2 streams on the 

simulated architecture. Table 2 gives the normalized 
execution time for three standard-definition and one 
high-definition (oslo) MPEG-2 streams of 8, 19, 31, 
and 30 frames, respectively. The table shows that the 
prefetching caches—despite their tiny sizes—
significantly reduce the overall execution time. 

7. Conclusion 

This paper presents three innovative techniques for 
data caches that are designed for streaming multiproc-
essor architectures. The primary technique uses a ge-
neric dataflow synchronization scheme to accomplish 
cache coherency and automatic prefetch-
ing/preflushing. These mechanisms are transparent to 
the application tasks. 

Secondly, the cache organization reserves in prin-
ciple non-overlapping cache locations for each data 
stream accessed by the processor. The processor se-
lects a set of cache locations through a stream identi-
fier that is unique for the dataflow structure. This 
greatly reduces the complexity of tag matching hard-
ware, while avoiding cache contention with respect to 
conventional associative caches. However, depending 
on the behavior of the processor, the system designer 
may decide to allocate a single cache line for multiple 
streams. 

Thirdly, the cache employs a new technique for 
data prefetching that aims to prevent overwriting valu-



 

able cached data. The method identifies cache loca-
tions for which it predicts that the data content is not 
expected to be further used and can be dismissed. In-
formation on the data availability in stream buffers in 
shared memory—provided by the synchronization 
scheme—ensures that no invalid data words are pre-
fetched. 

Even though the techniques can be used for larger 
cache designs, our specific implementation focuses on 
tiny caches of around a 100 byte. Simulation experi-
ments show that the portrayed cache architecture effec-
tively reduces utilized bandwidth and access latency to 
on-chip memory. We aim to deploy this cache 
architecture in a range of heterogeneous 
multiprocessor SoC subsystems for consumer 
electronics devices.  
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