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Abstract. The ability for providing a hardware platform which can be customized
on a per-application basis under software control has establishedReconfigurable
Computing (RC) as a new computing paradigm. A machine employing theRC

paradigm is referred to as aField-Programmable Custom Computing Machine
(FCCM). So far, the FCCMs have been classified according to implementation
criteria. For the previous classifications do not reveal the entire meaning of the
RC paradigm, we propose to classify the FCCMs according to architectural cri-
teria. To analyze the phenomena inside FCCMs, we introduce a formalism based
on microcode, in which any custom operation performed by a field-programmed
computing facility is executed as a microprogram with two basic stages:SET

CONFIGURATION andEXECUTE CUSTOM OPERATION. Based on theSET=EXECUTE
formalism, we then propose an architectural-based taxonomy of FCCMs.

1 Introduction

The ability of providing a hardware platform which can be transformed under soft-
ware control has establishedReconfigurable Computing (RC) [28], [42], [29] as a new
computing paradigm in the last ten years. According to this paradigm, the main idea
in improving the performance of a computing machine is to define custom comput-
ing resources on a per-application basis, and to dynamically configure them onto a
Field-Programmable Gate Array (FPGA) [11]. As a general view, a computing machine
working under the newRC paradigm typically includes aGeneral-Purpose Processor
(GPP) which is augmented with an FPGA. The basic idea is to exploit both the GPP
flexibility to achieve medium performance for a large class of applications, and FPGA
capability to implement application-specific computations. Such a hybrid is referred to
as aField-Programmable Custom Computing Machine (FCCM) [7], [16].

Various FCCMs have been proposed in the last decade. Former attempts in clas-
sifying FCCMs used implementation criteria [15], [31], [26], [47], [23], [38]. As the
user observes only the architecture of a computing machine [4], the previous clas-
sifications do not seize well the implications of the newRC paradigm as perceived
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by the user. For this reason, we propose to classify the FCCMs according to archi-
tectural criteria. In order to analyze the phenomena inside FCCMs, yet without refer-
ence to a particular instruction set, we introduce a formalism based on microcode, in
which any task (operation) to be performed by a field-programmable computing facil-
ity models its execution pattern on that of a microprogrammed sequence with two basic
stages:SET CONFIGURATION, andEXECUTE CUSTOM OPERATION. The net effect of this
approach is to allow a view on an FCCM at the level defined by the reference of the
user, i.e., the architectural level, decoupled from lower implementation and realization
hierarchical levels. The reader may note the similarity between the preceding formalism
and therequestor/server formalism of Flynn [13]. Based on theSET=EXECUTE formal-
ism, we propose an architectural-based taxonomy of FCCMs.

The paper is organized as follows. For background purpose, we present the most
important issues related to microcode in Section 2, and the basic concepts concern-
ing SRAM-based FPGAs in Section 3. Section 4 introduces a formalism by which the
FCCM architectures can be analyzed from the microcode point of view, and Section 5
presents the architectural-based taxonomy of FCCMs. Section 6 concludes the paper.

2 The Microcode Concept

Figure 1 depicts the organization
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Fig. 1.The basic microprogrammed computer

of a microprogrammed computer as
it is described in [32]. In the figure,
the following acronyms were used:
GPR – General Purpose Registers,
ACC – Accumulator, CR – Control
Registers, and PC – Program Counter.
For such a computer, a microprogram
in Control Store (CS) is associated
with each incoming instruction. This
microprogram is to be executed un-
der the control of theSequencer, as
follows:

1. The sequencer maps the incoming instruction code into a control store address, and
stores this address into theControl Store Address Register (CSAR).

2. The microinstruction addressed by CSAR is read from CS into theMicroInstruction
Register (MIR).

3. The microoperations specified by the microinstruction in MIR are decoded, and the
control signals are subsequently generated.

4. The computing resources perform the computation according to control signals.
5. The sequencer uses status information generated by the computing facilities and

some information originating from MIR to prepare the address of the next microin-
struction. This address is then stored into CSAR.

6. If anend-of-operation microinstruction is detected, a jump is executed to a instruc-
tion fetch microsubroutine. At the end of this microsubroutine, the new incoming
instruction initiates a new cycle of the microprogrammed loop.



The microinstructions may be classified by the number of controlled resources.
Given a hardware implementation which provides a number of computing resources
(facilities), the amount of explicitly controlled resources during the same time unit (cy-
cle) determines the verticality or horizontality of the microcode as follows:

– A microinstruction which controls multiple resources in one cycle ishorizontal.
– A microinstruction which controls a single resource isvertical.

Let us assume we have aComputing Machine (CM) and its instruction set. An
implementation of theCM can be formalized by means of the doublet:

CM = f�P ; Rg (1)

where�P is the microprogram which includes all the microroutines for implementing
the instruction set, andR is the set ofN computing (micro-)resources or facilities which
are controlled by the microinstructions in the microprogram:

R = fr1 ; r2 ; : : : ; rNg (2)

Let us assume the computing resources are hardwired. If the microcode4 is exposed
to theuser, i.e., the instruction set is composed of microinstructions, there is no way
to adapt the architecture to application but by custom-redesigning the computing fa-
cilities set,R. When the microcode is not exposed to theuser, i.e., a microroutine is
associated with each instruction, then the architecture can be adapted by rewriting the
microprogram�P .

Since the architecture of the vertical microinstructions associated with hardwired
computing facilities is fixed, the adaptation procedure by rewriting the microprogram
has a limited efficiency: a new instruction is created by threading the operations of fixed
(i.e., inflexible) computing facilities rather than generating a full-custom one.

If the resources themselves are microcoded, the formalism recursively propagates to
lower levels. Therefore, the implementation of each resource can be viewed as a doublet
composed of ananoprogram (nP ) and anano-resource set (nR):

ri = fnP ; nRg ; i = 1; 2; : : : ; N (3)

Now it is the rewriting of the nanocode which is limited by the fixed set of nano-
resources.

The presence of the reconfigurable hardware opens up new ways to adapt the archi-
tecture. Assuming the resources are implemented on a programmable array, adapting
the resources to the application is entire flexible and can be performed on-line. In this
situation, the resource setR metamorphoses into a new one,R�:

R �! R
�

= fr�
1
; r�

2
; : : : ; r�Mg; (4)

and so does the set of associated vertical microinstructions. It is obvious that writ-
ing new microprograms with application-tuned microinstructions is more effective than
with fixed microinstructions.

4 In this presentation, bymicrocode we will refer to both microinstructions and microprogram.
The meaning of the microcode will become obvious from the context.



At this point, we want to stress out that the microcode is arecursive formalism.
Themicro andnanoprefixes should be used against animplementation reference level5

(IRL). Once such a level is set, the operations performed at this level are specified by
instructions, and are under the explicit control of theuser. Therefore, the operations
below this level are specified bymicroinstructions, those on the subsequent level are
specified bynanoinstructions, and so on.

3 FPGA Terminology and Concept

A device which can be configuredin the field by the end user is usually referred to as a
Field-Programmable Device (FPD) [11], [19], [5]. Generally speaking, the constituents
of an FPD areRaw Hardware andConfiguration Memory. The function performed by
the raw hardware is defined by the information stored into the configuration memory.

The FPD architectures can be classified in two major classes:Programmable Logic
Devices (PLD) andField-Programmable Gate Arrays (FPGA). Details on each class
can be found for example in [6]. Although both PLD and FPGA devices can be used to
implement digital logic circuits, we will pre-eminently above all use the term ofFPGA
hereafter to refer to a programmable device. The higher logic capacity of FPGAs and
the attempts to augment FPGAs with PLD-like programmable logic in order to make
use of both FPGA and PLD characteristics, support our choice for this terminology.

Some FPGAs can be configured only once, e.g., by burning fuses. Other FPGAs
can be reconfigured any number of times, since their configuration is stored in SRAM.
Initially considered as a weakness due to the volatility of configuration data, the re-
programming capabilities of SRAM-based FPGAs led to the newRC paradigm. By
reconfiguring the FPGA under software control, application-specific computing facili-
ties can be implemented on-the-fly.

A discussion on choosing the appropriate FPGA architecture is beyond the goal of
this paper. More information concerning this problem can be found for example in [19].

4 FPGA to Microcode Mapping

In this section, we will introduce a formalism by which an FCCM architecture can be
analyzed from the microcode point of view. This formalism originates in the observation
that every custom instruction of an FCCM can be mapped into a microprogram.

As we already mentioned, by making use of the FPGA capability to change its
functionality in pursuance of a reconfiguring process, adapting both the functionality
of computing facilities andmicroprogram in the control store to the application char-
acteristics becomes possible with the newRC paradigm. For the information stored in
FPGA’s configuration memory determines the functionality of the raw hardware, the
dynamic implementation of an instruction on FPGA can be formalized by means of a
microcoded structure. Assuming the FPGA configuration memory is written under the

5 If it will not be specified explicitly, the IRL will be considered as being the level defined by
the instruction set. For example, although the microcode is exposed to theuser in the RISC
machines, the RISC operations are specified byinstructions, rather than by microinstructions.
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Fig. 2. The microcode concept applied to FCCMs. The� arrangement.

control of aLoading Unit, the control automaton, the FPGA, and the loading unit may
have a� arrangement, as depicted in Figure 2. The circuits configured on the raw hard-
ware and the loading unit(s) are all regarded as controlled resources in the proposed
formalism. Each of the previously mentioned resources is given a special class of mi-
croinstructions:SET for the loading unit, which initiates the reconfiguration of the raw
hardware, andEXECUTE for the circuits configured on raw hardware, which launches
the custom operations.

In this way, any custom operation of an FCCM can be executed in a reconfigurable
manner, in which the execution pattern models on that of a microprogrammed sequence
with two basic stages:SET CONFIGURATION, andEXECUTE CUSTOM OPERATION. It is
theSET=EXECUTE formalism we will use in building the taxonomy of FCCMs.

It is worth to specify that onlyEXECUTE FIXED OPERATION microinstructions can
be associated with fixed computing facilities, because such facilities cannot be recon-
figured. Also, assuming that a multiple-context FPGA [11] is used, activating an idle
context is performed by anACTIVATE CONFIGURATION microinstruction, which is ac-
tually a flavor of theSET CONFIGURATIONmicroinstruction. In the sequel, we will refer
to all loading unit(s) and resource(s) for activating the idle context asConfiguring Re-
sources (Facilities).

Since an FCCM includes both computing and configuring facilities, the statement
regarding the verticality or horizontality of the microcode as defined in Section 2 needs
to be adjusted, as follows:

Definition 1. For an FCCM hardware implementation which provides a number of
computing and configuring facilities, the amount of explicitly controlled computing
and/or configuring facilitiesduring the same time unit (cycle) determines the verticality
or horizontality of the microcode.

Therefore, any of theSET CONFIGURATION, EXECUTE CUSTOM OPERATION, and
EXECUTE FIXED OPERATION microinstructions can be either vertical or horizontal, and
may participate in a horizontal microinstruction.



Let us set theimplementation reference level as being the level of instructions in
Figure 2. In the particular case when the microcode is not exposed to the upper level,
an explicitSET instruction is not available to theuser. Consequently, the system per-
forms by itself the management of the active configuration, i.e., without an explicit con-
trol provided byuser. In this case, theuser“sees” only the FPGA-assigned instruction
which can be regarded as anEXECUTE CUSTOM OPERATION microinstruction visible to
the instruction level. Here, we would like to note that theEXECUTE FIXED OPERATION

microinstruction is always visible to theuser. Conversely, when the microcode is ex-
posed to the upper level, an explicitSET instruction is available, and the management
of the active configuration becomes the responsibility of theuser.

5 A Proposed Taxonomy of FCCMs

Before introducing our taxonomy, we would like to overview the previous work in
FCCM classification.

In [15] two parameters for classifying FCCMs are used:Reconfigurable Process-
ing Unit (RPU) size (small or large) andavailability of RPU-dedicated local memory.
Consequently, FCCMs are divided into four classes. Since what exactly meanssmall
and what exactly meanslarge is subject to the complexity of the algorithms being im-
plemented, the differences between classes are rather fuzzy. Also, providing dedicated
RPU memory is an issue which belongs toimplementation level of a machine; conse-
quently, the implications to thearchitectural level, if any, are not clear.

The Processing Element (PE) granularity, RPU integration level with a host pro-
cessor, and thereconfigurability of the external interconnection network are used as
classification criteria in [31]. According to the first criterion, the FCCMs are classi-
fied asfine-, medium-, andcoarse-grain systems. The second criterion divides the ma-
chines intodynamic systems that are not controlled by external devices,closely-coupled
static systems in which the RPUs are coupled on the processor’s datapath, andloosely-
coupled static systems that have RPUs attached to the host as coprocessors. According
to the last criterion, the FCCMs have areconfigurable or fixed interconnection network.

In order to classify the FCCMs, theloosely coupling versustightly coupling crite-
rion is used by other members of the FCCM community, e.g., [26], [47], [23], [38].
In the loosely coupling embodiment, the RPU is connected via a bus to, and operates
asynchronously with the host processor. In the tightly coupling embodiment, the RPU
is used as afunctional unit.

We emphasize that all these taxonomies are build usingimplementation criteria. As
the user observes only the architecture of a computing machine, classifying the FCCMs
according to architectural criteria is more appropriate. Since FCCMs are microcoded
machines, we propose to classify the FCCMs according to the following criteria:

– The verticality/horizontality of the microcode.
– The explicit availability of aSET instruction.

While the first criterion is a direct consequence of the proposed formalism, several
comments regarding the second criterion are worth to be provided. An user-exposedSET

instruction allows the reconfiguration management to be done explicitly in software,



thus being subject to deep optimization. The drawback is that a more complex compiler
is needed for scheduling theSET instruction at a proper location in time. Conversely, if
SET is not exposed to the user, such management will be done in hardware. This time,
the compiler is simpler, but at the expense of a higher reconfiguration penalty. With
a hardware-based management, the code compatibility between FCCMs with different
FPGA size and reconfiguration pattern can be preserved. Since the user has no concern
about the reconfiguration, the configuration management is an implementation issue,
much like the cache management in a conventional processor is.

In order to describe the classification process, several classification examples will
be provided subsequently. We have to mentioned that, for each system, the IRL has
been chosen such that as much FCCM-specific information as possible is revealed.

PRISC [33] is a RISC processor augmented with Programmable Functional Unit
(PFU). Custom instructions can be implemented on the PFU. The specification of such
instruction is done by means of a preamble to the RISC instruction format. When a
custom instruction is called, the hardware is responsible for updating the PFU con-
figuration: if a reconfiguration is needed, an exception which stalls the processor is
raised, and a long latency reconfiguration process is initiated. Since the reconfiguration
is not under the direct control of the user, a dedicated instruction for reconfiguration,
i.e.,SET CONFIGURATION, is not exposed to the user. Only one fixed or programmable
functional unit is explicitly controlled per cycle; therefore, the microcode isvertical.

ThePipeRench coprocessor [8] consists of a set of identical physicalStripes which
can be configured under the supervision of aConfiguration Controller at run-time.
PipeRench also includes aConfiguration Memory which stores virtual stripe config-
urations. A single physical stripe can be configured per cycle; therefore, the reconfigu-
ration of a stripe takes place concurrently with execution of the other stripes. Pipelines
of arbitrary length can be implemented on PipeRench. A program for this device is a
chained list of configuration words, each of which includes three fields: configuration
bits for each virtual pipeline stage of the application, anext-address field which points
to the next virtual stripe, and a set of flags for the configuration controller and four
Data Controllers. Therefore, the configuration word is a horizontal instruction. Since
the configuration controller handles the multiplexing of the application’s stripes onto
the physical fabric, the scheduling of the stripes, and the management of the on-chip
configuration memory, while the user has only to provide the chained list of the config-
uration words, we can conclude that there is no user-exposedSET instruction.

The (re)configuration of the Nano-Processor [46] or RaPiD [10] is initiated by a
master unit at application load-time. Each system may be used, at least theoretically, in
a multi-tasking environment, in which the applications are switched on or idle. Since
no further details whether the user can or cannot manage the reconfiguration are given,
we classify such systems asnot obvious information about an explicit SET instruction.

The Colt/Wormhole FPGA [3] is an array of Reconfigurable Processing Units in-
terconnected through a mesh network. Multiple independent streams can be injected
into the fabric. Each stream contains information needed to route the stream through
the fabric and to configure all RFUs along the path, as well as data to be processed. In
this way, the streams are self-steering, and can simultaneously configure the fabric and
initiate the computation. Therefore,SET is explicit and the microcode is horizontal.



Following the above mentioned methodology, the most well known FCCMs can be
classified as follows:

1. Vertical microcoded FCCMs
(a) With explicitSET instruction: PRISM [2], PRISM-II/RASC [43], [44], RISA0

[39], RISA00 [39], MIPS + REMARC [30], MIPS + Garp [21], OneChip-9800

[23], URISC [12], Gilson’s FCCM [14], Xputer/rALU [17], Molen vertically-
coded processor [41], MorphoSys system [38].

(b) Without explicitSET instruction: PRISC [33], OneChip [47], ConCISe [25],
OneChip-980 [23], DISC [45], Multiple-RISA [40], Chimaera [20].

(c) Not obvious information about an explicitSET instruction: Virtual Computer
[9], [46], Functional Memory [27], CCSimP (load-time reconfiguration) [35],
NAPA [34].

2. Horizontal microcoded FCCMs
(a) With explicit SET instruction: CoMPARE [36], Alippi’s VLIW [1], RISA000

[39], VEGA [24], Colt/Wormhole FPGA [3], rDPA [18], FPGA-augmented
TriMedia/CPU64 [37], Molen horizontally-coded processor [41].

(b) Without explicitSET instruction: PipeRench [8].
(c) Not obvious information about an explicitSET instruction: Spyder [22], RaPiD

(load-time reconfiguration) [10].

We would like to mention that applying the classification criteria on OneChip-98
machine introduced in [23], we determined that an explicitSET instruction was not pro-
vided to the user in one embodiment of OneChip-98, while such an instruction was pro-
vided to the user in another embodiment. It seems that two architectures were claimed
in the same paper. We referred to them as OneChip-980 and OneChip-9800. The same
ambiguous way to propose multiple architectures under the same name is employed
in [39]. For the Reconfigurable Instruction Set Accelerator (RISA), our taxonomy pro-
vides three entries (RISA0, RISA00, RISA000).

6 Conclusions

We proposed a classification of the FCCMs according to architectural criteria. Two
classification criteria were extracted from a formalism based on microcode. In terms
of the first criterion, the FCCMs were classified in vertical or horizontal microcoded
machines. In terms of the second criterion, the FCCMs were classified in machines
with or without an explicitSET instruction. The taxonomy we proposed is architectural
consistent, and can be easily extended to embed other criteria.
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