PRMDL: a Machine Description Language for Clustered VLIW Architectures

Andrei Terechko, Evert-Jan Pol, Jos van Eijndhoven
Philips Electronics Nederland B.V.
{andrei.terechko, evert-jan.pol, jos.van.eijndhoven}@philips.com

Abstract achieved by parameterising a compiler toolchain (see Figure

A iler-simulator f K be ret tabl t2).Thecompilertoolsreadtargetmachine parameters from
comprier-simutator iramework must be retargetable o, 4 chine description file and adjust their processing

enable platform-based processor design as _weII as pmpea[\ccordingly. To retarget the whole compiler toolchain one
processor architecture design space exploration. This paper

describes the design decisions taken for the retargetabilitg_lnly n_eeds to c_ha_nge _the target processor description in the
mechanism of the Philips Research compiler-simulato achine descrlpthn file. This _scheme enables substantial
framework driven by a central machine description file. The'€USe Of the complicated compiler software [2]
format of the machine description file plays an important machine A
role in defining the scope of retargetability of a compiler- dessypon e —> ma/ihine
simulator framework. The machine description format I_
PRMDL used in Philips Research supports a wide variety of IE @
VLIW architectures. In particular, PRMDL is capable of
expressing clustered architecture features such as machine B
. . R . description
incomplete bypass networks, multiple register files, along
with functional units shared or distributed among multiple Figure 2. A retargetable compilation trajectory
issue slots, diverse conditional operation mappings, and
more. The structure of PRMDL features separate software In the design of advanced processors like the new 64-bit
and hardware views on a processor. This insures robustnesgriMedia CPU64 [3] many decisions must be taken. For
of retargetability built into tools across several processor example, one of the most challenging tasks in the design of
generations. the CPU64 was studying the impact of the quantity and slot
assignment of the functional units. The size of the design
space for this task had }¥possible solutions [1]. Such tasks
need systematic exploration of the design space with
1. Introduction numerous iterations over processor instances in order to
]) . provide quantitative data that design decisions can be based
As time-to-market requirements demand faster desigiy, For this purpose a retargetable design space exploration

cycles, more programmable components are introduced ifhsgy framework including both retargetable simulator and
embedded systems. We are exposed to a substantial shift &f)mpiler should be deployed (see Figure 3). Varying

system functionality from hardware to software. In order toparameters in the machine description file quickly retargets

use massive hardware parallelism efficiently, an increasingly},o machine-independent compiler and simulator without
complicated compilation trajectory should be developedg,qn recompiling the framework.

However, its complexity should not affect system I
development time. Hence, traditional compilers, which must raEhiEyA
be rewritten for every new processor generation (see Figure description oxe

1), do not suffice any more. / \A
x B\‘ o
| descripton

exe —p machine
B

compiler 1 —p» exe —» machine
A

'S . |
compiler2 —p exe —Jp Mmachine
B

Figure 3. A retargetable DSE framework
Figure 1. A traditional compilation trajectory The format of the machine description file reflects the
scope of framework retargetability and thus decides between

This implies that the compilation trajectory must be ableg, oy elements and configurable elements of the architecture
to change its target machine quickly and easily, which can be

template. Consequently, the format has a great influence amperations from the physical machine. The virtual machine
reuse of the framework across multiple processomperation to physical machine operation mappings are
generations, the maintenance of the framework, as well adenoted by arrows in Figure 4.

on framework performance characteristics. The virtual machine remains constant throughout several

2. Related work generations of the processor hardware, which preserves C

source-level compatibility. One virtual machine in Figure 4

Existing machm;a description Iang(l;ag_?fs, n Wh.'gh t""tﬁgei:)rovides the programmer with a uniform software interface
processor parameters are expressed, difier considerably. multiple physical machines. Changes in the processor

order. o put PRMD.L (Ph|I|p§ Re;earch Machine hardware influence not the C code but the machine
Description Le}nguage) In perspective W'th. othgr Iar]gu"’lg.esdesc;ription file. For example, if a hardware operation is left
one can consider the classification described in [4], whic Ut in the next processor generation, only rewriting the

presents three categories. Behavioural machine descripti%appings in the machine description file for software

Ianguages_ (ML [8], .ISI.DL 71, _Insulm, etc.) describe a operations mapped onto the missing hardware operation is
processor in terms of its instruction set. Structural maCh'n"?equired

description formats (MIMOLA [9], MLRISC, etc.)
primarily focus on a structural model of the architecture.
Mixed-level languages (PRMDL, EXPRESSION [4],
HMDes [5], LISA [6], etc.) combine both structural and
behavioural views and drive both compiler and simulator .
stable software view

(see Figures.) _ N - =
hardware views

Virtual
Machine

Compared to HMDes, the PRMDL format is simpler and
requires less programming effort than HMDes. HMDes
captures constraints between operations with explicit
reservation tables, using a hierarchical description for
compactness. While PRMDL aims primarily all at compilers
and simulators for TriMedia CPUs, HMDes appears to suit Figure 4. Separate software and hardware views
better research-oriented architecture explorations.

Physica
Machine

The software operation descriptions in a virtual machine
architectures similar to PRMDL. Among its strong points €&y operand and result type information, which enables

are the explicit specification of the memory subsystem andYP&-checking in C sources, while the hardware operations
the graphical user interface. In EXPRESSION, like in in a physical machine are type-independent, so that the same

PRMDL, the reservation tables for the processor operationd@rdware operation can be used with different argument and

are derived from the processor structural descriptionresu“ types. The instruction set architecture of the virtual

EXPRESSION features plain LISP-like syntax and relativeMachine _shovys an orthogonal set of operations over data
ease of modifications. However, having about one thousanlyP€S: Which simplifies programming. On the other hand, the
operation mappings in the TriMedia compilation trajectory,phys'cal machine instruction set is rgduced and rgflects the
more concise and legible PRMDL description of mappingsprocessor hardware ope_rqnons, wh|_ch are someumes.type
is advantageous. On top of that, the PRMDL syntax allowdndependent. The explicit separation of the physical

mapping across architectures with different data path Widthgnh""clr"ne and wrt;u;l rr:jachme aI;o a|fftjs the maintenance of
and various conditional mappings (see Section 4.4). the large sets of hardware and software operations in a
compiler-simulator framework.

4. PRMDL overview

The structure of the PRMDL format is as follows:

MACHINE_DESCRIPTION
DECLARATION

EXPRESSION has syntax simplicity and coverage of

3. Physical and virtual machines

PRMDL features explicitly separate software and
hardware views on the processor (see Figure 4). The
physical machine constituting the hardware view
accommodates all parameters of the processor hardware

architecture, such as register file and issue slot parameters. ;ZZEGSES

The virtual machine constituting the software view contains SIDE EFFECTS

the programming model of the processor. Using software DATA PATH POINTS

operations from the virtual machine, the application pyysicAL MACHINE (+ Hardware view on the CPU %)
programmer writes code in C. During the compilation of the STATE

application the software operations are mapped on hardware SLOTS

FUNCTIONAL_UNITS

DATA_PATHS STATE

PHYSICAL_OPERATIONS f0 WIDTH 64 (* register file rf0 *)
VIRTUAL_MACHINE (* Software view on CPU *) NUMBER 128 (* 128 64-bit registers *)
VIRTUAL_OPERATIONS INDEX_RANGE 0 TO 127 (* index range is from 0 to 127 *)
CODE_CONVENTIONS ACCESS_MANNER random (* random access RF *)
MAPPING_SECTIONS PORTS (wp0, wpl -> gp0,rp0,rp1,rp2,rp3) ; (* write/read ports *)
The next four sections will elaborate on this structure. The distribution of functional units among VLIW issue

slots is described in the FUNCTIONAL_UNITS section.
There are three types of functional units in PRMDL: an

Essentially, the DECLARATION section is intended to ordinary functional unit, which occupies one issue slot, a
improve legibility (types and ranges) and flexibility (side- super functional unit, which occupies more than one issue
effects) of the machine descriptions, as well as to ensurglots [3], and a shared functional unit, which can be
robust consistency checks. The TYPES section enumerate®ntrolled via several issue slots.

4.1 Declaration

possible operand and result types of a virtual operation. The abc de f
RANGES section describes integer ranges used in the 4 g
descriptions of operation immediates, conditional

mappings, and code convention clauses. The L T Fuo FUO [
SIDE_EFFECTS list declares the side-effect hierarchy used

by a compiler for generating ordering constraints between

virtual operations. The DATA_PATH_POINTS section] FUL

contains data path points that are not declared in the port ° /

sections of the slots and register files, but still designate s

resource conflicts in the described architecture. A slot0 FU2 | glot1
declaration example: Figure 5. Functional unit types

DECLARATION

TYPES o The configuration in Figure 5 includes slot0 and slotl
vecGasb, (*64-bit signed byte vector %) with four functional unit instances: two FUO of the ordinary
vec64ub; (* 64-bit unsigned byte vector *) . .

RANGES type, one super functional unit FU1, and one shared
pisby2 128 TO126 STEP2, (* a range for an immediate *) functional unit FU2. A description of this structure in the
pu3p2: POWER?2 (0 TO 3); (* a non-linear range *) PRMDL Ianguage is as follows:

SIDE_EFFECTS SLOTS
pcsw, pesw.intround, pesw.fpflags; (* a side-effect hierarchy *) slot0 (a,b->c), slotl (d,e->f); (* two slots are defined *)

DATA_PATH_POINTS FUNCTIONAL_UNITS
common_bus, switch; (* extra data path points *) FUO (* two instances of an ordinary functional unit *)

The rangePOWER2(0 TO 3)enotes the integer set SLOTS slot0(b->c), slotl(d->);

TIME_SHAPE (0->1)

UNIT_OPERATIONS op1(0), op2(1);
(* a super functional unit *)

SLOTS slotO(a,b->) & slot1(d,e->f);

{0,1,2,4,8}. The side-effect hierarchy (see in detail Section
4.2) in this example specifies two side-effeutsw.intround
and pcsw.fpflagsthat can also be addressed together as

pcsw pcswdenotes the Program Control and Status Word TIME_SHAPE (0,0,1,1->2)

register in TriMedia processors, which contains processor UNIT_OPERATIONS 0p3(2),0p4(3):
control and status bits such as floating point exception flags ru2 (* a shared functional unit *)
(pcsw.fpflagy integer round mode bitp€¢sw.introundl, etc. SLOTS slot0(b->c) | slotl(e->f);

. . TIME_SHAPE (0->9)
4.2 Physical Machine UNIT_OPERATIONS 0p5(4);

The Physical Machine section contains the processor The TIME_SHAPE clauses specify timing properties of
hardware model, including a hardware operations list. Thgunctional unit operations. For example, the expression
STATE section describes processor resources holding itSIME_SHAPE (0,0,1,1->2)specifies that the first two
state (primarily register files, but also other types ofarguments of an operation from the functional unit FU1
processor memory). In the STATE section one can describgrrive in cycle 0 to the slot ports, the two others can be read

register file properties, such as register width, number ofn cycle 1, and the result is produced in cycle 2.
registers, constant registers, access time, read/write ports,

overlapping, access type (e.g. random, FIFOs, LIFOs), look- The .D.ATA—P'.A‘TH. section spem_ﬂes Intra-processor
up tables, etc. connectivity. It primarily serves to define resource conflicts

on the register file or slot ports or some abstract data path

points defined in the DECLARATION section. The bypasspropagation of side-effects from physical to virtual
networks, writeback-bus schedulers, and inter-clustepperations ensures conciseness and consistency of the
communication paths can all be described in theoperation property descriptions.

DATA_PATH section. 4.3 Virtual Machine

register_fileO register_filel

00 Awp0 ol wpl The Virtual Machine section contains the programming

N model of the processor. The VIRTUAL_OPERATIONS

_ , section includes software operation signatures, which

vir0 | opO vipl | opl contain operation names, argument and result types, and
operation properties. For example, the lines
VIRTUAL_OPERATIONS

slot0 slotl SIGNATURE (vec64sb,vec64sb->int64) COMMUTATIVE vopl,vop2;
Figure 6. Various data paths describe commutative operationsplandvop2 which

]] o take two operands of the typec64stand return a result of
rp0, rpl, wpQ wpl, ip0, ipl, opQ oplin Figure 6 the typeint64. Thevec64skandint64types must be declared
designate read, write, input, and output ports, respectively. Ay the DECLARATIONS section. The compiler front-end
description of the processor data paths in Figure 6 is agan use this type information in type checking and casting.

follows:
The CODE_CONVENTIONS section includes a list of
DATA_PATHS . . .
- compiler-oriented code conventions such as the return value

rp0 -> ip0 DELAY O; (* aread bus *) i) . i
ipl->ipl DELAY 0; (*aread bus ¥) register, the stack pointer register, global and local register

op0 -> wp0, ip0 DELAY 0; (* a writeback bus and bypass *) pOOIS’ etc.

opl ->wpl, ipl DELAY 0; (* a writeback bus and bypass *) 4.4 Mapplng

rp0 -> ipl DELAY 1; (* inter-cluster communication *)

rpl ->ip0 DELAY 1; (* inter-cluster communication *) The MAPPINGS_SECTION sections define operation

The PHYSICAL OPERATIONS section contains transformations, capable of driving parameterised code
operation names, guards, arguments, results, properties, ap@lection at all compilation stages. The mappings can
side-effects. All this information is combined in operation include conditional clauses, where an operation is mapped
signatures. The signature inputs can be issue slot operan@§to different groups of operations depending on a condition
designated by **, immediate arguments designated by thdhat should be matched by an immediate argument of the
range name that the immediate must fit, and read sidg2Peration. The Mapping section syntax also allows defining
effects. The outputs can be either issue slot operands or wrifstruction set transformations across architectures with
side-effects. An optional guard *?' specifies that the different data path widths.

operation is conditional. For example, the line Each mapping section can include two types of mappings:
PHYSICAL_OPERATIONS conditional mappings and ordinary mappings. An ordinary
SIGNATURE (*2 **->** pesw.fpflags) popl, pop2; mapping defines a transformation of a source operation into

defines properties of the physical operatigupl and a set of target operations.
pop2 which are guardable, take two operands, return two MAPPINGS
results, and write tpcsw.fpflagga side-effect). vimma8 (i8 -> z) = pimm16 ((i8<<8)+i8 -> z); (* parameter expression *)

In PRMDL terms, side-effects are changes in the machine Sb‘suésame (xy > 2) = packsame b (y >A). Seb‘b A=z);
state apart from direct input/output data flow (e.g. in a '€ Mappings can have temporary variables, parameter
register file) caused by operations. Examples of side-effect8XPressions, and references to processor registers. The
are machine flags affected by floating point operations, £ RMDL format is also capable of specifying mappings
program counter affected by branch operations, memor?cross grchnectures with qwferent data path sizes (e.g. from
changes affected by load/store operations, etc. The compilé128-bit CPU onto a 64-bit one). In order to do so PRMDL
can use them to generate sequential ordering constraints fgf/0Ws to address fractions of the arguments and results:
operations. Initially, the side-effects are specified in the vaddli2s (xy->z)=vadd64 (x.0,y.0->2.0), vadds4 (x.1,y.1 ->2.1);
physical signatures, from which all physical operations, In this example.0, y.0, andz.Orefer to the lower 64 bits
subsequently, inherit them. Virtual operations are translatedf the arguments and results, whiel, y.1, andz.1denote
into physical ones during the compilation process. Thereforéhe upper 64 bits.
they must inherit side-effects from the corresponding
physical operations in order to enable the orderingSO
constraints generation by the compiler front-end. The

Conditional mappings describe a transformation of a
urce operation onto different sets of target operations

depending on a condition, which is evaluated with a help ofhelp the compiler to do type checking and casting
immediate arguments of the source operation. The possible

S X « Side-effects in virtual operation signatures help the
condition types are the following:

compiler to generate optimal ordering constraints for

1. fitting a declared range: operations

SWITCH vmul (x,y->z) =

CASE y IN_RANGE POWER2(imm_rangel)
vshift(x,LOG2(y)->z);

This type of mapping is especially useful for custom ° Conditi(')naI. mappings 'allow full parameterisation of
operations with immediates, which can differ from c0de selection in the compiler front-end
processor to processor significantly. The code selection for « Mapping across architectures with different data path
these operations can be parameterised using such mappingizes ensures strong processor family compatibility

2. fitting the range of an argument of a physical operation: « Parameter expressions in mappings allow arithmetic

< Supported diversity of types of local storage (random
access register files, LIFOs, FIFOs, etc.)

SWITCH vmul (x,y->z) = operations on immediates in parameterised code selection
CASE y IN_RANGE OPERATION_RANGE (pimul)
il Acknowledgments
CASE x IN_RANGE OPERATION_RANGE (pimu) A number of dedicated architects and engineers at Philips
pimul (y.x->2); Research Eindhoven have contributed to the design of the

DEFAULT pmul PRMDL machine description format and its integration in

The condition of this mapping is defined by an operationthe compiler-simulator framework. These people include
with an immediate argument rather than by the range of thg.v. Eijndhoven, E.J. Pol, R. Baas, J. Leijten.

immediate itself. In the example aboweulis mapped onto
pimulif x ory fits the range of an immediate argument of the6' References

operationpimul, otherwise it is mapped gmmul [1] G.J. Hekstra, G.D. La Hei, et al. “TriMedia CPU64 Design
. Space Exploration”. In Proceedings International Conference
3. matching a pattern: on Computer Design, Austin, Texas, October 1999, pp. 599-
SWITCH vmul (x,y->2) 606.
CASE y FITS_EXPRESSION POWER2(p)+POWER2(q) [2] E.J.D. Pol, B.J.M. Aarts, et al. “TriMedia CPU64 Application
pshift (x,p->a), pshift (x,g->b), padd (a,b->2); Development Environment”. In Proceedings the International
DEFAULT pmul; Conference on Computer Design, Austin, Texas, October

. . . . 1999, pp. 593-598.
This mapping can be used to define code selections basegl ;1. van Eijndhoven, F.W. Sijstermans, et al. “TriMedia

on a pattern matching condition. The example, for instance, * cPU64 Architecture”. In Proceedings of the International

defines the mapping of themul operation onto theshift, Conference on Computer Design, Austin, Texas, October
shift, andpaddoperations if there exist integprandq such 1999, pp. 586-592. _

thaty = 2P + 29 This mapping type, however, doesn’t [4] P- Grun, A. Nicolau, et al. *Expression: a language for

support simultaneous equations and available operations in architecture “exploration through _ compiler/simulator

b retargetability”. In Proceedings of the Design Automation and
the pattern are limited te, -, *, /, POWER2LOG2, and Test in Europe, Paris, France, March 1999.

NOT. [5] J. C. Gyllenhaal et al. “The MDes user manual“. Technical
. report, http://www.trimaran.org, 1998.
5. Conclusions [6] V. Zivojnovic, S. Pees, and H. Meyr. “LISA - machine
This paper describes a powerfu' Comp”er-simu'ator deSCfiptiOE\ language and generic machine model for HW/SW
retargetability mechanism, which enables template-based %?'ﬂZf'gpocg]sgﬁoces,efﬁngé r?éisﬂc‘g IchtEb\éer{lgsg%Op on VLS
processor design and allows for fast and vast design Spagg G.gHadjiyiannis, gS,. Hanono, anoi S Devadas..“ISDL: AN
explorations for future clustered VLIW processors. The " instruction set description language for retargetability”.
mechanism is controlled by framework parameters stored in Proceedings of Design Automation Conference, Anaheim, CA,
a central machine description file. The key features of the May 1997.

machine description file format PRMDL are as follows: ~ [8] M. Freericks. “The nML machine description formalism".
Technical Report TR SM-IMP/DIST/08, TU Berlin, Computer

* Explicit separation of compiler front-end (Virtual Science Dept., July 1993.
Machine) and back-end (Physical Machine) instruction sets[9] R. Leupers and P. Marwedel. “Retargetable code generation
which provides better source-code compatibility based on structural processor descriptions®. Design

) _ _ Automation for Embedded Systems, vol. 3, no. 1, 1998.
» Support for forthcoming clustered architectures with

multiple register files and incomplete connectivity
» C types of arguments in virtual operation signatures

	Abstract
	A compiler-simulator framework must be retargetable to enable platform-based processor design as ...
	1. Introduction
	Figure 1. A traditional compilation trajectory
	Figure 2. A retargetable compilation trajectory
	Figure 3. A retargetable DSE framework

	2. Related work
	3. Physical and virtual machines
	Figure 4. Separate software and hardware views

	4. PRMDL overview
	4.1 Declaration
	4.2 Physical Machine
	Figure 5. Functional unit types
	Figure 6. Various data paths

	4.3 Virtual Machine
	4.4 Mapping

	5. Conclusions
	Acknowledgments

	6. References
	[1] G.J. Hekstra, G.D. La Hei, et al. “TriMedia CPU64 Design Space Exploration”. In Proceedings I...
	[2] E.J.D. Pol, B.J.M. Aarts, et al. “TriMedia CPU64 Application Development Environment”. In Pro...
	[3] J.T.J. van Eijndhoven, F.W. Sijstermans, et al. “TriMedia CPU64 Architecture”. In Proceedings...
	[4] P. Grun, A. Nicolau, et al. “Expression: a language for architecture exploration through comp...
	[5] J. C. Gyllenhaal et al. “The MDes user manual“. Technical report, http://www.trimaran.org, 1998.
	[6] V. Zivojnovic, S. Pees, and H. Meyr. “LISA - machine description language and generic machine...
	[7] G. Hadjiyiannis, S. Hanono, and S. Devadas. “ISDL: An instruction set description language fo...
	[8] M. Freericks. “The nML machine description formalism“. Technical Report TR SM-IMP/DIST/08, TU...
	[9] R. Leupers and P. Marwedel. “Retargetable code generation based on structural processor descr...

	PRMDL: a Machine Description Language for Clustered VLIW Architectures

