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Abstract

This paper describes an experiment which aims to reveal
the potential impact on performance yielded by augment-
ing a TriMedia-CPU64 processor with a multiple-context
FPGA core. We first propose an extension of the TriMedia-
CPU64 architecture, which consists of a Reconfigurable
Functional Unit and its associated instructions. Then, we
address the decoding of variable-length codes on such ex-
tended TriMedia and describe the architecture and FPGA-
implementation of a Variable-Length Decoder (VLD) com-
puting facility. When mapped on an ACEX EP1K100
FPGA, the proposed VLD exhibits a latency of 7 cycles.
Preliminary results indicate that by configuring each of the
VLD and 1-D IDCT (which is described elsewhere) facili-
ties on a different FPGA context, and by activating the con-
texts as needed, the augmented TriMedia can perform mac-
roblock parsing followed up by pel reconstruction with an
improvement of 20� 25% over the standard TriMedia.

1. Introduction

A common research question is the performance im-
provement that may be achieved by augmenting a general
purpose processor with a reconfigurable core. The idea
is to exploit both the general purpose processor flexibil-
ity to achieve medium performance for a large class of ap-
plications, and FPGA capability to implement application-
specific computations. There have been various attempts to
attach a reconfigurable core to a processor, most of them
involving a simple processor [1, 2, 3]. This paper presents
an experiment which aims to evaluate the potential impact
on performance yielded by augmenting a TriMedia-CPU64
processor with a multiple-context FPGA core.

We first propose an extension of the TriMedia-CPU64
architecture, which encompasses a multiple-context FPGA-
based Reconfigurable Functional Unit (RFU) and the asso-
ciated instructions. With such extension, the user is given
the freedom to define and use any computing facility sub-
ject to the FPGA size and TriMedia organization. In order
to evaluate the potential of the proposed architectural ex-
tension, we chose a significant chunk of MPEG decoding
as benchmark. In particular, we considered the parsing of
Variable-Length (VL) coded data at the macroblock layer
followed up by a pel reconstruction procedure. After devel-
oping a pure software implementation of this benchmark,
we decided to provide FPGA hardware support for VL de-
coding and 1-D IDCT. By configuring each of the Variable-
Length Decoder (VLD) and 1-D IDCT [12] facilities on a
different FPGA context, and by activating the contexts as
needed, the augmented TriMedia can compute macroblock
parsing followed up by pel reconstruction with an improve-
ment of20 � 25% over the standard TriMedia. Given the
fact that TriMedia-CPU64 is a 5 issue-slot VLIW processor
with 64-bit datapaths and a very rich multimedia instruction
set [4], such an improvement within the target media pro-
cessing domain indicates that the TriMedia + FPGA hybrid
is a promising approach.

The paper is organized as follows. For background pur-
poses, we briefly present several issues related to MPEG
standard and the architecture of the FPGA core in Section
2. Section 3 describes the proposed architectural extension
of TriMedia-CPU64. The VLD user-defined instruction, as
well as pure software and FPGA-based implementation is-
sues of the variable-length decoder are discussed in Section
4. The execution scenario of the chosen benchmark on both
standard and extended TriMedia, and experimental results
are presented in Section 5. Section 6 completes the paper
with some conclusions and closing remarks.
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Figure 1. Macroblock parsing and pel reconstruction module – adapted from [5].

2. Background

To make the presentation self-consistent, we would like
to address some issues related to macroblock parsing and
pel reconstruction – two significant stages of MPEG decod-
ing [5]. We also review the architecture of the FPGA that
we used as an experimental reconfigurable core.

2.1. Macroblock parsing and pel reconstruction

The macroblock parsing process reads the VL coded
data string from which all the headers corresponding to
slice and higher layers have been removed, and outputs
various symbols:decoding parameters at the macroblock
layer (macroblockaddressincrement, macroblocktype,
codedblock pattern, andquantizerscale), motion values,
andcomposite symbols (run/level pairs andendof block)
which represent the DCT quantized coefficients. The de-
coding of the Variable-Length Codes (VLC) is performed
according to a set of VLC tables defined by the MPEG stan-
dard. The motion values are used by a motion compensation
process which is not considered here. However, since these
values are decoded during the macroblock parsing, the over-
head associated with the decoding of the motion values will
be taken into consideration in the subsequent experiment.

Following the macroblock parsing, a pel reconstruction
process recreates8 � 8 matrices of pels. The pel recon-
struction module is depicted in Figure 1. Its functional-
ity is as follows. First,8 � 8 matrices of DCT quantized
coefficients are recreated by a Matrix Reconstruction mod-
ule. Second, an inverse quantization (InvQ) is performed.
An 8 � 8 quantization table, and a multiplicative quantiza-
tion factor (quantizerscale) are used in the InvQ process.
Third, a DC prediction unit reconstructs the DC coefficient
in intra-coded macroblocks. Finally, an IDCT is performed.

In connection with Figure 1 and the subsequent experi-
ment, we would like to mention that the VLC decoder and
IDCT will benefit from reconfigurable hardware support.

2.2. The multiple-context FPGA architecture

Field-Programmable Gate Arrays (FPGA) [6] are de-
vices which can be configuredin the field by the end user. In
a general view, an FPGA is composed of two constituents:
Raw Hardware andConfiguration Memory. The function
performed by the raw hardware is defined by the infor-
mation stored into the configuration memory. Generally
speaking, a multiple-context FPGA [7] is an FPGA hav-
ing the configuration memory replicated in order to con-
tain several configurations for the raw hardware. That is,
a multiple-context FPGA contains an on-chip cache of raw
hardware configurations, which are referred to ascontexts.
Such a cache allows a context switch to occur on the order
of nanoseconds [9]. However, loading a new configuration
from off-chip is still limited by low off-chip bandwidth.

In the sequel, we will assume a multiple-context FPGA
which has the architecture of the raw hardware identical
with that of an ACEX 1K device from Altera [8]. Our
choice could allow future single-chip integration, as both
ACEX 1K FPGAs and TriMedia are manufactured in the
same TSMC technological process. Briefly, an ACEX 1K
device contains an array of 4-input Look-Up Tables (LUT),
a number of Embedded Array Blocks (EAB), each EAB be-
ing mainly a RAM block with 8 inputs and 16 outputs, and
an interconnection network.

The next section will introduce the architectural exten-
sion for the TriMedia-CPU64.

3. An architectural extension for TriMedia

TriMedia-CPU64 is a 64-bit 5 issue-slot VLIW core [4],
launching a long instruction every clock cycle. It has a
uniform 64-bit wordsize through all functional units, the
register file, load/store units, on-chip highway and exter-
nal memory. Each of the five operations in a single in-
struction can (in principle) read two register arguments and
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write one register result. The architecture supports sub-
word parallelism and is optimized with respect to media
processing. With the exception of floating point divide and
square root, all functional units have a recovery of 1, while
their latency ranges from 1 to 4. The TriMedia-CPU64
VLIW core also supports multi-slot operations, or super-
operations. Such a super-operation occupies two neighbor-
ing slots in the VLIW instruction, and maps to a double-
width functional unit. This way, operations with more than
2 arguments and/or more than one result are possible.

First we propose that the TriMedia-CPU64 processor is
augmented with a Reconfigurable Functional Unit (RFU)
which consists mainly of a multiple-context FPGA core.
Also, a hardwired Configuration Unit which manages the
reconfiguration of the raw hardware is associated to the re-
configurable functional unit, as it is depicted in Figure 2.
The reconfigurable functional unit is embedded into TriMe-
dia as any other hardwired functional unit, i.e., it receives
instructions from the instruction decoder, reads its input ar-
guments from and writes the computed values back to the
register file. In this way, only minimal modifications of the
basic architecture are required.

In order to use the RFU, a kernel of new instruc-
tions is needed. This kernel constitutes the extension of
the TriMedia-CPU64 instruction set architecture we pro-
pose. Loading a context information into the RFU con-
figuration memory is performed under the command of a
SET CONTEXT instruction, while theACTIVATE CONTEXT

instruction controls the swaping of the active configuration
with one of the idle on-chip configuration.EXECUTE in-
structions launch the operations performed by the comput-
ing resources configured on the raw hardware [10]. In this
way, the execution of an RFU-mapped operation requires
three basic stages:SET CONTEXT, ACTIVATE CONTEXT, and
EXECUTE.

The user is given a number ofEXECUTE instructions
which encompass different operation patterns: single- or
double-slot operations, operations with an immediate argu-
ment, etc. It is the responsibility of the user to choose the
appropriateEXECUTE instruction corresponding to the pat-
tern of the operation to be executed. At the source code
level, this may be done setting up analias, as it is described

subsequently. Since theEXECUTE instructions are executed
on the RFU without checking of the active configuration, it
is still the responsibility of the user to perform the manage-
ment of the active and idle configurations.

For the semantics of an operation performed by a com-
puting facility, its latency, recovery, and slot assignment are
all user definable, the source code of the application should
contain information to augment the Machine Description
File [11]. Assuming for example a user-definedVLD in-
struction, a way to specify such information is to annotate
the source code as follows:

.alias VLD EXEC3 ; specifies the aliasEXECUTE 3

; (super-op with two inputs and outputs)
.latency VLD 7 ; specifies the VLD latency
.recovery VLD 7 ; specifies the VLD recovery
.slot VLD 1+2 ; specifies the slot assignment

; of the VLD instruction

In a similar way, the user can define as many RFU-related
instructions as she wants. The next section will present the
sintax and semantics of the VLD instruction, as well as im-
plementation issues of the VLD computing facility.

4. VLD instruction and computing facility

A VLD instruction which returns a single DCT symbol
(run/level pair orend-of-block) per execution is considered.
A super-operation pattern with two input (Rx, Ry) and two
output (Rz, Rw) registers is assigned to the VLC decoder:

VLD Rx, Ry ! Rz, Rw

The Rx register specifies the decoding parameters which
identify the type of the symbol to be detected: AC/DC, lu-
minance/chrominance, intra/non-intra. The second register,
Ry, contains 64 bits of the VL compressed data. The de-
coded symbol and its code length will be stored into reg-
isters Rz and Rw, respectively. In MPEG decoding, a new
VLDoperation can be launched only after the previous one
has completed. Consequently, a recovery lower than the la-
tency gives no advantages. Therefore, such implementation
should not be sought.
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Table 1. The partitioning of the VLC codes of AC coefficients into groups and classes.
Name of No. of symbols Class / Leading Code length Bypassed Effective address
the group in the class bit-sequence bit-sequence length

End-of-block 1 10 2 n.a. n.a.
Group 0 2 11 2 + s n.a. n.a.
Escape 1 0000 01 6 + 18 n.a. n.a.

2 011 3 + s 3
4 010 4 + s 4
4 0011 5 + s 5

Group 1 2 0010 1 5 + s 0 5
8 0001 6 + s 6
8 0000 1 7 + s 7
16 0010 0 8 + s 8
16 0000 001 10 + s 5

Group 2 32 0000 0001 12 + s 0000 00 7
32 0000 0000 1 13 + s 8
32 0000 0000 01 14 + s 6

Group 3 32 0000 0000 001 15 + s 0000 0000 0 7
32 0000 0000 0001 16 + s 8

The functionality of the VLC decoder can be imple-
mented in both software and reconfigurable hardware. We
will evaluate their mutual performance subsequently.

4.1. VLD implementation on standard TriMedia

The implementation of the VLC decoder in the stan-
dard TriMedia is a modified version of that proposed in
[13]. The VLD is implemented as a repeated table-lookup.
Each lookup decodes a chunk of bits (8 bits at the first level
lookup), and determines if a valid code was encountered. In
case of a valid decode, a run-level pair is generated, or an es-
cape or end-of-block flag is set. If amissis detected, an off-
set into the VLC table and a chunk-size for a second-level
lookup is generated. This process of signaling an incom-
plete decode and generating a new offset may be repeated
three times. After compiling the C code and scheduling pro-
cedure, we evaluated that a table lookup takes 21 cycles.
Consequently, the decoding of a single DCT coefficient can
take between 21 and 63 cycles. The size of all lookup tables
is 10 KB.

4.2. VLD implementation on FPGA

The VLD is implemented on FPGA as a parallel lookup
into EABs, followed by a selection of the proper result.
Since a single EAB can implement a lookup table of 8 in-
puts, we partitioned the VLC table according to this FPGA
architectural characteristic, as presented in Table 1.

The implementation is presented in Figure 3. Regarding
the groups 1, 2, and 3, a number of 1, 6, and 9 leading bits
are shifted out from thesame VLC string. The three new

resulted strings are each sent to a different EAB, and three
run/level pairs are generated as if the shifted leading bits
would have been those mentioned in the columnBypassed
header. By means of combinatorial circuits, the same pro-
cedure is carried out for groups 0, end-of-block, and escape.

Each of the leading bit-sequence which define the VLC
class is decoded by a multiple-input gate. Once the class
is detected, a multiplexer will select the proper output from
the outputs of EABs, EOB detector, Escape detector, and
Group 0 decoding. The code length of the decoded symbol
is generated according to the detected class.
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Figure 3. The VLD implementation on FPGA.
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By simulation, we found that the FPGA-based VLD op-
eration exhibits a latency of 7. After compiling and schedul-
ing, we evaluated that a single DCT coefficient can be de-
coded in 11 cycles including all overheads. 6 EABs of an
ACEX EP1K100 device are used.

5. Experimental results

In order to determine the potential impact on per-
formance provided by the multiple-context reconfigurable
core, we will consider a benchmark which consists of a
macroblock parsing followed by pel reconstruction proce-
dures. Therefore, we operate at MPEG slice level, i.e., the
parameters of the slice and above layers are assumed to be
constant. This computing scenario is presented in Figure 4.
First, a variable-length decoding of a macroblock (header
and DCT coefficients extraction) is performed. Then, the
8 � 8 matrices are recreated, and inverse quantization, fol-
lowed by DC coefficient prediction for intra-coded mac-
roblocks are carried out. After all macroblocks in a slice
have been decoded, a burst of 2-D IDCTs is launched in
order to reconstruct the initial matrices of pels.

A pure software implementation of the 2-D IDCT which
can be scheduled into 56 cycles is claimed in [4], while
an FPGA-based implementation exhibiting a throughput of
one 2-D IDCT every 32 cycles is described in [12]. All the
contexts of the RFU are to be configured at application load
time, i.e., a number ofSET CONTEXT instructions are sched-
uled on the top of the program code. A sample of the code
using the instructions of the architectural extension is pre-
sented subsequently. As it can be observed, theVLD and
IDCT exhibit the same execution pattern: two inputs and
two outputs.

.alias VLD EXEC3 ; alias of the VLD instruction

.alias IDCT EXEC3 ; alias of the IDCT instruction
SET CONTEXT VLD ; load context VLD
SET CONTEXT IDCT ; load context IDCT

...
ACTIVATE CONTEXT VLD ; configure VLD resource

...
VLD Rx, Ry ! Rz, Rw ; execute VLD

...
ACTIVATE CONTEXT IDCT ; configure IDCT resource

...
IDCT Rx, Ry! Rz, Rw ; execute IDCT

...

Therefore, our experiment includes two approaches:
pure software andFPGA-based. As mentioned, a DCT co-
efficient is decoded in 21-63 cycles, and a 2-D IDCT can
be computed in 56 cycles in the pure software approach.
In the FPGA-based approach, a DCT coefficient is decoded
in 11 cycles, and the 2-D IDCT is carried out with the

throughput of 1/32 IDCT/cycle. The context switching pe-
nality is 10 cycles.

5.1. Pel reconstruction performance evaluation

A program which is MPEG-compliant has been written
in C, and has been compiled and scheduled with TriMedia
development tools. The performance evaluation has been
done assuming that, despite of the large lookup tables which
are stored into memory, the standard TriMedia-CPU64 will
never cope with a cache miss. In other words, we compare
an “ideal-cache” standard TriMedia with a multiple-context
FPGA-augmented TriMedia.

Subsequently, we present the results according to two
scenarios:worst-case1 andaverage-case. In both cases we
assumed that an average of 5 non-zero coefficients per block
are decoded. In the worst-case scenario, we assumed that
all DCT coefficients produce ahit on the first level lookup
when the pure software implementation is used. In the same
worst-case scenario, we also assumed that the overhead in-
troduced by parsing the macroblock headers has the largest
value (for example, the quantization value is assumed to be
updated every macroblock). Since the worst-case scenario
coresponds to long variable-length codes, it is statistically
not relevant. Therefore, we evaluated the performances in a
average-case scenario. In such scenario, we assumed that
two of five DCT coefficients produce amiss at the first
lookup. Also, we weighted the overhead introduced by
parsing the macroblock header with the transmiting prob-
ability of different decoding parameters of the macroblock
layer. The results are presented in Table 2. The numbers
indicate the improvements we get in connection with the
number of cycles.

Finally, we proceeded to a global evaluation of the per-
formance improvement. For an MPEG string with10%
intra-coded,70% B-coded, and20% P-coded macroblocks,
the improvement for FPGA-augmented TriMedia is20 �
25% in the average-case scenario.

6. Conclusions and future work

We have proposed an architectural extension for
TriMedia-CPU64 which encompasses a multiple-context
FPGA-based reconfigurable functional unit and the associ-
ated instructions. On the augmented TriMedia-CPU64, we
estimated a performance improvement of20� 25% over a
simple TriMedia-CPU64 for a macroblock parsing followed
by a pel reconstruction application, at the expense of three
new instructions: SET CONTEXT, ACTIVATE CONTEXT,
EXECUTE. In future work, we intend to consider the motion
compensation and to evaluate the performance improve-
ment for a complete MPEG decoder.

1Considered from our point of view.

429



8x8 IDCT
more macroblocks
in the current slice ?

more blocks
in the current slice ?

Yes

No

Yes

NoVLC decoding
Matrix reconstruction

Inverse Q
DC prediction

Figure 4. The computing scenario of the macroblock parsing and pel reconstruction routine.

Table 2. Performance improvement of multiple-context FPGA-augmented TriMedia-CPU64 over “ideal-cache”
(standard) TriMedia-CPU64 for a macroblock parsing followed by pel reconstruction application.

Worst-case scenario Average-case scenario
Intra-coded macroblocks prior to IDCT 15% 25%

after IDCT 19% 29%

P-coded macroblocks prior to IDCT 10% 21%

(1 block / macroblock) after IDCT 14% 25%

P-coded macroblocks prior to IDCT 13% 24%

(3 blocks / macroblock) after IDCT 18% 27%

B-coded macroblocks prior to IDCT 8% 17%

(1 block / macroblock) after IDCT 12% 20%

B-coded macroblocks prior to IDCT 11% 22%

(3 blocks / macroblock) after IDCT 17% 25%
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