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Abstract—We consider two hardwired solutions for repeti-
tive padding, a performance restricting algorithm for real time
MPEG-4 execution. The first solution regards application specific
implementations, the second regards general purpose processing.
For the application specific implementations we propose a systolic
array structure. To determine the chip area and speed, we have
synthesized its VHDL models for two field-programmable gate
array families—Xilinx and Altera. Depending on the implemented
configuration, the unit can process between 77 K and 950 K
macroblocks per second (MB/s) when mapped on FPGA chips
containing less than 10 K logical gates and frequency capabilities
below 100 MHz. The second approach regards an augmentation
of a general-purpose arithmetic logical units with an extra func-
tionality added to perform repetitive padding. At trivial hardware
costs of a few hundred 2 X 2 AND-OR logic gates, we achieve an
order of magnitude speed-up compared to nonaugmented general
purpose processor padding. The proposed hardware solutions
meet the requirements of all MPEG-4 visual profile levels. Both
approaches have been proven to be scalable and fit into different
architectural concepts and operand widths.

Index Terms—Arithmetic-logical-unit (ALU) augmentation,
field-programmable gate array (FPGA), hardwired repetitive
padding, MPEG-4, systolic structure.

1. INTRODUCTION

SSUMING audio-visual data compression standards,
MPEG-4 [1] is the first to address content-based coding.

To allow the efficient implementation of the specific standard
requirements, several application profiles are defined. Within
each profile, a number of levels constrain the computational
complexity and the required data bandwidth of the application.
Complexity analysis [2] indicates that real-time software im-
plementations of the intermediate CoreProfile@Levell require
more than 5 billion reduced instruction set computer (RISC)-
like instructions per second. Consequently, we can safely con-
clude, that real time implementations of the highest profiles and
levels of MPEG-4 would cost substantially more instructions
per second (up to the order of 100 billion). These processing
requirements will significantly exceed the capabilities of the
general purpose processors, despite near future technology im-
provements. The work presented in this paper addresses one im-
portant feature in MPEG-4, the repetitive padding technique,
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defined at all levels in the core and main profiles of the stan-
dard. Software profiling results, reported in [2]-[4], indicate
that padding is a computationally demanding and time con-
suming process, which restricts the real time operation of the
MPEG-4 codecs. We present two general hardware approaches
to implement the repetitive padding algorithm in real time. The
first approach assumes MPEG-4 application-specific processing
(ASIP) designs. It can be used as a hardware accelerator for
an ASIP MPEG-4 processor or reconfigurable processing [5].
The second approach aims at hardware augmentations of gen-
eral-purpose arithmetic-logical-units (ALUs) with application
specific functional extensions. We show that both of the ap-
proaches are beneficial for improving the execution of the repet-
itive padding at little cost. More specifically, the following is
shown regarding performance and cost:

¢ Performance—real time processing for all MPEG-4
profiles and levels. Assuming available technologies, data
processing rates from 77 K up to 280 K macroblocks
per second (MB/s) are achieved employing 4-16 simple
processing elements (PEs) mapped on similar Xilinx
and Altera field-programmable gate arrays (FPGAs). We
show that higher processing speeds are achievable when
more PEs (e.g., 32, 64) are implemented. It is established
that the required operating frequency is low. The 16-pixel
line processing FPGA implementations produce results
at frequencies between 11 and 25 MHz. For a 64-bit
augmented ALU example, running at 1 GHz, 7.8 million
MB/s can be achieved.

* Hardware costs—we establish that scalable implementa-
tions, tunable to all Profiles@Levels requirements are fea-
sible. To achieve the performance mentioned previously, a
low number of FPGA cells (419 Xilinx configurable logic
blocks (CLBs) and 1024 Altera LCs) is required for a
16-pixel processing unit. Only 344 AND-OR gates hardware
penalty costs are required for a 64-bit padding-augmented
ALU. We also show that the 32- and 128-bit implementa-
tions cost 172 and 688 extra AND-OR gates, respectively.

The remainder of the discussion in this paper is organized as
follows. In Section II, we give some background knowledge and
the motivation for our research. Section III describes in details
the ASIP padding structure. The general purpose ALU padding
augmentation is presented in Section I'V. Section V gives quanti-
tative evaluations of both approaches and presents analytical and
simulation results in numbers. Finally, Section VI concludes the
discussion.

II. BACKGROUND AND MOTIVATION

For content-based coding, MPEG-4 uses the concept of a
video object plane (VOP). A VOP is an arbitrarily shaped re-
gion of a frame, which usually corresponds to a semantic object
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in the visual scene. A sequence of VOPs in the time domain is
referred to as a video object (VO). Each VOP is described by its
shape and texture. Shape is mainly represented in binary format.
This format represents the shape as a bitmap, referred to as bi-
nary alpha plane. Each pixel in this plane takes one of two pos-
sible values, which indicate whether the pixel belongs to the ob-
ject or not. The binary alpha plane is divided into 16 x 16-pixel
blocks called binary alpha blocks (BAB). The texture of a VOP
represents its color by macroblocks (one 16 X 16 array of lu-
minance and two 8 X 8 arrays of chrominance pixels). As its
preceding visual data compression (MPEG) standards, MPEG-4
adopts motion compensation techniques, to exploit temporal re-
dundancies in the encoded video sequences. The difference is
that in MPEG-4 motion compensation is defined over VOPs in-
stead of frames.

1) The Repetitive Padding Algorithm: The purpose of
padding in MPEG-4 is to ensure more accurate block matching
in motion compensation algorithms for arbitrary shaped visual
objects. The padding process defines the full-color values for
pixels outside the shape of a VOP. Macroblocks, which lie on
the boundary of the VOP are referred to as boundary blocks and
are processed with repetitive padding. Exterior macroblocks
(completely outside the VOP) are padded using the extended
padding method, which has low processing complexity, and
will not be discussed further in this paper. Repetitive padding,
described in [6], is equivalent to the following steps.

Step 1. Initialization. Define any pixel outside the object
boundary to be zero. Make a duplicate binary alpha map.
Step 2. Horizontal Repetitive Padding. Scan each hori-
zontal line of a block. Each scan line is composed of zero
and nonzero line segments (according to the shape bits in
the binary alpha map).

* In zero segments, between an end point of the scan
line and the end point of a nonzero segment, all zero
pixels are replaced by the pixel value of the end pixel
of nonzero segment.

* In zero segments, between the end points of two dif-
ferent nonzero segments, all zero pixels take the av-
erage value of these two end points.

Nonzero segments are not processed. All shape bits, cor-
responding to padded pixels are set in the duplicate binary
alpha map.

Step 3. Vertical Repetitive Padding. Scan each vertical line
of the block and perform the identical procedure as de-
scribed for the horizontal line. The updated shape infor-
mation from the duplicate binary alpha map is used.

Fig. 1 illustrates the repetitive padding algorithm with a sim-
plified example of a 4 x 4 pixel BAB and a 4 x 4 pixel lumi-
nance block. The original data structures are in the left part of the
figure, where the definition of the zero and nonzero pixels is de-
picted according to Step 1. The luminance block contains color
values (indicated by { A, B, C, D, E'}) for the pixels, belonging
to the shape of the VOP (nonzero pixels) and {z} value (don’t
care) for the zero pixels. The central two squares of Fig. 1 il-
lustrate the resulting data after the horizontal repetitive padding
(Step 2). The duplicate BAB is indicated by S’ and the 4 X 4 lu-
minance block is padded accordingly. In this part, the example
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Fig. 1. Repetitive padding algorithm.
TABLE 1
VISUAL PROFILES @ LEVELS DEFINITIONS AND PROCESSING SPEED
Profile Level Session Numb Max. | Bound.
Size VO MB/s MB/s
Main L4 1920x1088 32 489600 | 244800
L3 CCIR 601 32 97200 48600
L2 CIF 16 23760 11880
L1 N.A. N.A. N.A. N.A.
Core L2 CIF 16 23760 11880
LI QCIF 4 5940 2970
Simple L2 CIF 4 23760 N.A.
Scalable L1 CIF 4 7425 N.A.
Simple L3 CIF 4 11880 N.A.
L2 CIF 4 5940 N.A.
L1 QCIF 4 1485 N.A.

illustrates both cases, mentioned in Step 2, i.e., replicating a
boundary pixel and estimating the average of two boundary
pixels. Finally (Step 3), the vertical repetitive padding is per-
formed, identically to the horizontal, and the resulting BAB and
luminance blocks are shown in the right-most area of Fig. 1. The
same procedure is executed for each of the two chrominance
blocks from the padded macroblock, as well.

2) Motivation: Inthispaperweadvocate hardwired solutions
for repetitive padding. The rational behind such a proposal is
as follows: Unlike its predecessors, MPEG-4 is much more
demanding in terms of computational complexity with even
more data intensive algorithms. This is illustrated in Table I,
which represents the required data processing speed according
to the MPEG-4 Visual Profiles@Levels definitions [7]. The
Core Profile is the first to deal with arbitrary-shaped and
temporally scalable objects, useful where a relatively simple
content interactivity is required (e.g., Internet multimedia). The
most demanding visual profile appears to be the Main Profile.
It augments the functionality of the Core profile by coding
of interlaced, semi-transparent, and sprite objects. It can be
used for interactive and entertainment-quality broadcast and
DVD applications [1]. At the highest level of the Main profile
(L4 in Table I) a session with a frame size of 1920 x 1088 is
processed, containing up to 32 VOs at a maximum of 489 600
macroblocks per second (MB/s). The last column of the table
represents the required boundary macroblocks per second,
which is an important criterion for evaluating the devices we
are presenting further in this paper. Considering the above
explanations, we can conclude that the performance demands
of the Simple MPEG-4 Profile are approximately the same
as of MPEG-2, since in this profile only rectangular video
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TABLE 1II
COMPUTATIONAL DEMANDS OF CORE@L1 AND MAIN@L4

Profile MPEG-4 # Bound. | SW-MIPS
Algorithm | VO MB/s | Required

Core@L1 All MPEG-4 1 742 4 500
Algorithms 4 2 970 18 000

Repetitive 1 742 175

Padding 4 2 970 700

Main@L4 Repetitive 1 7 650 1 794
Padding 32 244 800 57 400

objects are defined. Therefore, the challenge is to meet the
requirements of the most-demanding Core and Main Visual
Profile Levels of MPEG-4, where arbitrary-shaped visual objects
are processed.

A summary of the computational complexity of the QCIF,
Core Profile Level 1 of MPEG-4, is reported in [2]. Since this is
the lowest profile level, which utilizes the padding algorithm,
we shall consider its real-time requirements as the minimum
for a hardware implementation. At this level, the computational
power, reported for the software encoding of a single object is
in the order of 4500 million (RISC-like) instructions per second
(MIPS). Assuming a software performance optimization by
a factor of up to ten (accepted to be feasible in [2]), the
total computational complexity is within the computational
capabilities of the contemporary general purpose processors
(500-1000 MIPS). In the case of four video objects (see
Table I); however, the real-time software feasibility becomes
problematic with its requirements of approximately four times
higher computational workload. Given the above considerations,
the need of a hardware acceleration of MPEG-4 is evident, even
at this low profile level. Further analysis of the requirements
for the software implementation indicates that the padding
algorithm occupies some 175 MIPS for a single video object, or
around 700 MIPS for the maximum four video objects, stated
at Level 1 of the Core profile (Table I). Considering Table I,
we can estimate that the required speed of 5940 MB/s for the
Core Profile Level 1 is approximately 82 times lower than
the speed requirements of the highest—Main@Level4 Profile
(489 600 MB/s). A simple arithmetic estimation indicates that
for the highest MPEG-4 profile level, the nonoptimized software
padding would require approximately 57 000 MIPS and when
extremely optimized (ten times speed-up)—on the order of
6000 MIPS. Even for the significantly less complex decoder
part of MPEG-4, the padding algorithm will require some 24
000 MIPS for nonoptimized software implementation down
to 2500 MIPS in dramatically optimized programming. All
these approximated estimations of the MPEG-4 requirements
are systematized in Table II.

III. APPLICATION-SPECIFIC PROCESSOR APPROACH

Since padding is performed over horizontal and vertical pixel
lines identically, we propose a scalable systolic structure to
process pixel blocks per line basis. Consequently, we define a
PE and a topology to connect functional groups of PEs.

1) PE: A single PE, which is dedicated to process each pixel
of a block, is depicted in Fig. 2. The same PE is used for lumi-
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nance and chrominance padding. The following equations de-
scribe the functionality of the PE:

0S = (S Vv LIy VRIy) (1)
O = O0SAIVOSA[(LLg+ Rlz) > i )
1 = LIy A Rly

LO=SAI|S,I|]VSARL, RO=SA|S,I|VSALI (3)
S’ =SV LIy VRIy )

where V and A represent logical OR and AND operations, respec-
tively, overline stands for logical negation, A >> 7 denotes “shift
A with ¢ positions right”, and + is an arithmetic summation of
binary vectors. OS stands for output select signal; N represents
the width of the processed data (we assume N = 8); LI, RI are
left and right input vectors with width N + 1; LO, RO are left
and right output vectors with width N + 1; I, O are data input
and output vectors with width N; S is the shape (input) bit be-
fore processing; S’ is a mask output bit after processing. LIz
denotes the first N (least-significant) bits of LI (bits 0 to N — 1);
LIyis the Nth (the most-significant) bit of LI, used for shape,
and | S, I| denotes the concatenation of bit S and vector L.

The operation of the PE is explained by the following.

« If the input shape bit S is set (the pixel belongs to the
object and should not be padded), then:

—  The output O takes the value of the input /, i.e., the
pixel keeps its color.

—  The value of the input (pixel) I is propagated to the left
and to the right (via outputs O+ and RO+) for further
processing. The shape input bit S is propagated by the
same multiplexers and occupies the most-significant
bits of LO and RO.

—  The output bit S’ is set, the pixel has been processed.

e If the input bit S = 0 (the pixel has to be padded), then:

— the output O takes the average of LIy and
RIs, RlF, LIy or I, depending on LIy and Rly.
Note: If RIx or LIy is zero, the corresponding RI5
or LI should also be initialized to zero—see (2).

—  The LI value is propagated via RO and the RI—via LO
including color and shape information.

—  The output bit S’ is set, the pixel has been processed.

2) The Systolic Structure: To process a pixel line, padding
elements are concatenated (Fig. 3) with the left-most and the
right-most inputs initialized to zero (including LI = 0, RIxy =
0). We can easily evaluate the processing speed of the struc-
ture, given its operating frequency!. Let us assume a chain of
n PE(n = 4,8, 16), operating at frequency F,, Hz. Further as-
sume NP8 and NY16 denoting the numbers of cycles, necessary
to process an 8-pixel (chrominance) and a 16-pixel (luminance)
line respectively. Some potential values of these parameters are
shown in Table III. The processing of 16 pixels by any n - PE
configuration will take (N,I'16) /(F},) s and for a 256-pixel lumi-
nance block-(16 - N6 /F,) [s]. Identically, the processing of
two 8 x 8-pixel chrominance blocks will take (16 - NI*8)/(F,)
[s] to the same unit configuration. Since a macroblock consists

'We distinguish (data) processing speed, measured in macroblocks per second
(MB/s) from the device operating speed (frequency), measured in Hertz (Hz).
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Fig. 2. A padding PE.
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Fig. 3. Single scan line/column padding structure.

TABLE III
VALUES OF NP8 AND N P16
n Average Worst Case
NPS NPIG NP8 NP16
n n n 7n
4 2.5 5.5 3 7
8 1 2.5 1 3
16 0.5 1 0.5 1
16-k 0.5 1 0.5 1

of 256 luminance and 128(2 x 64) chrominance pixels, padded
vertically and horizontally, a whole macroblock will be padded
for (32/F,) - (NF® + NI'6) [s]. If we implement a configura-
tion, which processes several (say k) 16-pixel lines in parallel,
we can formulate the processing speed as follows:

Fp-k
32 (NS + NP6y

(&)

processing_speed =

Formulation (5) is still valid for n < 16, assuming that k = 1.

In Table III, we separate the values for each of the parameters
into two groups, namely: average values and worst-case values.
The numbers represent the count of processing cycles at oper-
ating frequency F,, for different numbers of PEs (column “n”).
The cycle count NI’® is disproportionately greater for chromi-
nance line padding when n < 8 compared to the case when
n > 8. Identical is the case with the cycle count N.I''6 when
n < 16 compared to the case when n > 16. This is because
if n < 16, we cut the data propagation chain within the line to
be padded. In such cases extra processing cycles are required to
complete the computations, because padding is highly data de-
pendent regarding the data within a line/column [more details
are discussed in the section to follow and Fig. 6(b)].

3) Possible Configurations: The proposed structure is scal-
able and can contain an arbitrary number of PEs. Moreover, it
is possible to implement several structures, to process multiple
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Fig. 4. ALU augmentation for a single-pixel padding.

lines in parallel. We report three cases of configurations with
practical significance.

* 16 PE unit—processes one luminance or two chrominance
lines/columns per operating cycle.

* 8 PE or 4 PE unit—processes a half/quarter of luminance
or entire/half chrominance line/column. An additional
control circuit is required, to maintain intermediate com-
putational results.

* 32,64,...,256 PE unit—processing two or more lumi-
nance and four or more chrominance lines/columns per
operating cycle. The extreme configuration would process
the whole macroblock.

IV. THE AUGMENTED ALU

Here, we consider a general-purpose ALU, augmented to sup-
port repetitive padding via subword data parallelism. We ac-
commodate padding without creating critical ALU paths and
preserve the ALU functionality. Since 8-bit integer data are fre-
quently used, in this paper we assume the same data formats (our
scheme with proper considerations will accommodate “N-bit”
quantities as stated in MPEG-4, N being 10, 12, etc.).

1) Pixel Processing: A single byte processing structure,
which is dedicated to process each pixel of a block, is depicted
in Fig. 4. Its organization is similar to the one illustrated in
Fig. 2, but it is extended with additional pipelining to fit into
the general-purpose ALU cycle. We pipeline the processing
flow by dividing it into two stages. The first stage contains a
propagation node (PN) and two multiplexers. The multiplexers
are required to preserve the original functionality of the ALU.
A byte-controlled adder and an output multiplexer build the
second pipeline stage. The byte controlled adder is a part of the
original multi-byte ALU adder, with controllable carries be-
tween the bytes. The padding output multiplexer can be merged
with the existing ALU output multiplexer, depicted in Fig. 4 by
the dash-lined arrow, leading from the logical unit (LU). The
function of the PN is to propagate the appropriate values to its
adjacent PNs and to supply data and control signals to the byte
controlled adder and the output multiplexer. Its functionality
can be described by (3) and (4).

2) Line/Column Padding: To process a line or a column
from a block by an n-byte ALU, we have to implement a chain
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Fig. 5. Scan line/column padding augmentation of an ALU.

of n PN (i.e., n-pixel parallel padding) similar to the structure
in Fig. 3. A section of such processing circuitry for two ad-
jacent pixels is depicted in Fig. 5. The added ALU logic has
to perform the functions described in (1)—(4). Each node from
the propagation chain propagates the pixel values from left to
right and from right to left when its corresponding shape bit S
is zero. When a shape bit is 1, the corresponding PN transmits
the value of the pixel (driven via input I) to its adjacent nodes.
The proper multiplexer input is selected to drive the appropriate
value out of the ALU. This structure is scalable and can contain
an arbitrary number of PNs, depending on the ALU width (i.e.,
n elements for an n-byte ALU).

3) Putting Everything Together: We will describe the
padding process flow, performed by a 64-bit ALU, a general
view of which is depicted in Fig. 6(a). The operand control
circuit (Op_Control) is a part of the operands critical path.
It is responsible for setting the adder operands and performs
operations like sign extension, operand masking etc. The result
control (RC) circuit deals with flags handling like overflows,
carries, equal zero, etc.

Data buffering and initialization are identical for the appli-
cation specific implementation, described earlier. Fig. 6(b) de-
picts a general view of the 64-bit initialization and cycle parti-
tioning for luminance line/column padding. Since a luminance
line (128-bit) can not be processed in one pass by a 64-bit ALU,
we assume that the left-most half (the left-most subline) of the
line is processed first. Depending on the right-most shape bit of
the subline, padded in the first cycle, the full-line padding would
require two or three cycles. If the right-most shape bit of the first
half of the luminance line is “0”, three cycles in total will be re-
quired to pad the whole luminance line, otherwise (when shape
bit is “1”), two cycles would be sufficient. Since the discussed
right-most shape bit is available before the next operands (de-
scribing the other half of the line) are issued, we have branch
determination (a perfect branch prediction) [8] for the pipeline.
We can avoid this branching, assuming a worst-case scenario,
i.e., three cycles to process any luminance line/column. An im-
plementation according such an assumption would lead to sim-
pler control while still yielding very high processing speeds.
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Fig. 6. Generalized 64-bit padding enabled ALU. (a) Pipeline stages—general
view. (b) Luminance processing—data initialization and buffering by cycles.

The BA and BB buffers in Fig. 6(b) contain initialization and
intermediate 8-bit data along with one bit for shape handling.
Equation (5) is also valid for a padding augmented ALU. We
can consider n as the number of bytes the ALU processes in a
cycle and NP8 NP'6__the average number of cycles spent to
process one chrominance and one luminance line in a long data
sequence. We can conclude that in a long data sequence, a com-
plete luminance line processing by a 64-bit padding augmented
and pipelined ALU would take on average 2.5 cycles to perform
(NP6 = 2.5). The padding of a chrominance line by the same
ALU would take approximately one cycle (NF® = 1).

V. QUANTITATIVE EVALUATION

Here, we evaluate the proposed implementations using the
measurements processing speed(MB/s) and chip area (logical
blocks). We have taken into account: parallelism, pipelining,
and system inherent delay. We also compare our proposal to
other existing schemes.

A. Systolic Array Implementation

We have experimented with different numbers of PEs.
Without loss of generality and for embedding our results into
the MOLEN [5] experimental platform, we assume recon-
figurable technology. We have written synthesizeable VHDL
models of a single PE and a generic multi-element structure of
PEs. To get realistic values for the parameters of the unit, we
have synthesized the VHDL models for two different FPGA
technologies, namely the Xilinx xc4085xlpg559-09 and the
Altera epf10k20rc240-4 chips, which can be run at comparable
frequencies (around 100 MHz). For both chip families we have
evaluated structures of 4, 8, and 16 PEs and speed has been
reported in megahertz. Two extra evaluations for 32 and 64 PEs
Xilinx mappings illustrate how the data organization and the
number of PEs influence the performance of the unit.

1) Area and Speed Evaluation: Table IV reports the area
estimates for the Xilinx chip in the absolute units the vendor
defines—CLBs and in percentage of the available gate array
area. For the Altera chip, results are reported in Table V in
similar manner but the units for the absolute area are defined
by Altera as logical cells (LCs). The speed estimations for both
FPGA families suggest similar results. Besides the operating
frequency, measured in megahertz, we also evaluated the actual
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TABLE IV
RESULTS FOR THE XILINX xc4085x1pg559-09 CHIP

# # CLBs Speed
PE total % MHz MB/s
Average | Worst C.
4 45 of 3136 4 24.5 95 700 76 600
8 206 of 3136 7 18.2 162 500 142 200
16 419 of 3136 14 11.4 | 237 500 | 237 500
32 838 of 3136 27 11.4 | 475 000 | 475 000
64 | 1676 of 3136 | 53 11.4 | 950 000 | 950 000

data processing speed of the different configurations. Since
VOPs may vary in size and resolution, the MPEG-4 require-
ments group has defined the binding criteria for implementation
complexity in terms of transferred macroblocks per second
(Table I). For consistency with this definition, in the last two
columns of Tables IV and V, we have estimated the processing
speed in MB/s according to (5)—more specifically, the average
and worst-case values. The reported numbers indicate that
the padding structure can meet the real-time requirements for
a broad range of visual resolutions. Note, that for structures
with PE number, which is a multiple of 16, the average and
worst-case speeds are equal. This is due to the data dependency
within a line and the 16-pixel wide data structure to be pro-
cessed. In such large structures, the required number of cycles
to pad a 16-pixel line is fixed (N1 = const).

The Core and Main profile levels of MPEG-4 require pro-
cessing speeds in the range 2970-244 800 Boundary MB/s to
maintain from 4 up to 32 VOPs. It is obvious that the oper-
ating speeds, achieved by the proposed padding unit, completely
match the required values.

B. ALU Augmentation

As indicated in the previous section, our assumption is: ac-
commodate padding without creating critical ALU paths and
preserve the ALU functionality. Furthermore, it is of interest to
establish if the expenses in terms of hardware are significant.

1) Critical Paths/Speed Estimation: Before addressing the
critical path of the stages, we discuss generally what is consid-
ered to be an ALU critical path. Assuming that an ALU op-
eration is performed in a single cycle, the ALU critical path
in a general purpose design can be approximated to be twice
the delay of an adder plus a small constant of two to four logic
stages. Given that a 64-bit adder using 2 X 2 AND-OR (or equiv-
alent) gates requires seven logic stages [9], the ALU can be ap-
proximated by at least 14 2 x 2 AND-OR logic stages. Regarding
the critical path penalty issue, it has been noted that byte/nibble
controlled adders (used in the past to perform, for example, dec-
imal operations) will not increase the cycle time. The reason for
such a possibility is that the masking is embedded implicitly in
the stages. For a precise description and discussion for a con-
trolled adder, more complex than the one proposed here, the in-
terested reader is referred to [10].

The computation of padding requires two pipeline stages
[Fig. 6(a)]: one computing the PN operation and one performing
the masked ALU operation. We note that a pipeline stage is a
machine cycle, while a logic stage is the delay of a gate.

a) Pipeline Stage 1: The following operations are per-
formed in this stage.
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TABLE V
RESULTS FOR THE ALTERA epf10k20rc240-4 CHIP

# # LCs Speed
PE total % | MHz MB/s

Average | Worst C.
4 254 of 1152 | 22 | 248 96 900 77 500
8 SITof 1152 | 44 | 19.8 176 800 | 154 700
16 | 1024 of 1152 | 88 13.4 | 279200 | 279 200

* Operands are routed through the propagation chain.

* Data, to be processed in Stage 2, is loaded in the pipeline
latches.

* Control signals for the output multiplexer are generated.

The first-stage critical path is clearly linear to the length of input
data and it is a serial operation. This critical path is equal to the
number of bytes in the ALU operands plus one multiplexers.
Given that the worst case is the largest input ALU, implemented
in practice (64 bit), the critical path is equal to the delay of
14 % = 9 multiplexers which fits into a single ALU cycle. For
usual 32-bit units, the delay is equal to five multiplexer delays. It
should be noted, that operands are passed through the PNs only
when a padding operation is performed. They are bypassing the
first pipeline stage for a conventional ALU operation, adding
one extra input in the already existing bypassing multiplexer.
Consequently, the first cycle of padding computations will not
imply a critical path problem. The bottomline is that for evalu-
ating the performance of the scheme, proposed here, it is safe to
assume no augmentation to the processor cycle times.

b) Pipeline Stage 2: In this pipeline stage, the following
operations that could comprimise the critical path are per-
formed.

* The byte-controlled adder performs masked additions
over the data stored in the pipeline latches.

* The output multiplexer issues the appropriate results ac-
cording to the generated control signals (see Fig. 4).

The ALU critical path penalty could have been augmented by a
single two-way AND element (added possibly to the critical path
of the byte controlled adder). Such a penalty has been shown to
be avoidable [10] with implicit computations. Thus it should not
extend the critical paths of a general purpose ALU implementa-
tion. The critical path penalty for reading from the general pur-
pose register or bypassing the operands of the ALU is a 2—1 mul-
tiplexer and it should be noted that such a multiplexer already
exists. It is used, for example, to perform bypassing of operands
from other units, direct data passing from caches etc. The only
foreseeable penalty is adding a single input to the already ex-
isting multiplexer, which is not anticipated to create critical path
problems.

In estimating the expected performance we note that an ALU
instruction takes 1 cycle, padding takes two cycles latencies.
To estimate the possible speed achievable from the proposed
solution we consider the following: Let us assume an n - 8-bit
padding augmented ALU operating at frequency F;, [Hz]. Let
us assume values of n that have practical significance—4, 8, 16,
(i.e., 32, 64, 128-bit ALU). To evaluate the speed of the ALU
we can use (5), which gives results for long data sequences.
Assuming a value of F,, = 1 GHz (which is currently easily
achievable for general purpose processors) and using the data
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TABLE VI
HARDWARE ESTIMATION AND PROCESSING SPEED AT F,, = 1 GHz
ALU n Number of Speed [MB/s]
bits extra gates Average Worst Case
32-bit 4 172 3906 250 3125 000
64-bit 8 344 8 928 600 7 812 500
128-bit | 16 688 20 833 300 | 20 833 300
' Our scheme
20 000 000 - e
—
—
'»? /
8
g 2000 000 —
8
=
200 000, L
32 64 128
Number of ALU bits
Fig. 7. Processing speed for different ALU operand sizes and F,, = 1 GHz

(in logarithmic scale).

from Table III into (5), we calculated the implementation
speeds, given in Table VI.

The most demanding profile level, level 4 of the Main
MPEG-4 profile, requires 244 800 Boundary MB/s (maximum
489 600 MB/s) for a high resolution session type (1920 x 1088)
and 32 objects (Table I). This rates are an order of magnitude
lower than what the augmented ALU implementations can
achieve (see Fig. 7). The potentials of the structure indicate
capabilities to meet even more-demanding future profiles of the
visual data compression standards [11].

2) Hardware Estimations: We choose the 2 X 2 AND-OR
logic block as a basis for the hardware estimations. The reason
for such a choice lies on the fact that such a block is com-
monly available to most technology libraries [9]. A 1-bit 2 to
1 multiplexor is a 2 X 2 AND-OR gate. The hardware penalty
for a single-byte padding structure is: 2 X 9-bit multiplexers,
2 x 8-bit multiplexers and 1 OR gate. That accounts for 35
2 X 2 AND-OR gates. An n-byte implementation will cost n - 35
AND-OR gates plus additional cost for the ALU multiplexer of
n - 8 gates, i.e., n - 43 2 X 2 AND-OR gates. Table VI contains
the exact values of the hardware penalties for different ALU
sizes. It is noted that our estimations, as indicated in Table VI,
strongly suggest that the hardware cost is negligible.

C. Related Work

The repetitive padding algorithm is described in [6] and [12],
but some modifications have also been reported. In [13] and
[14], new algorithms are proposed to modify the original repeti-
tive padding. All of them suggest software improvements but do
not focus on the hardware execution, nor on performance. The
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VLSI hardware padding accelerator, reported in [15], has a com-
plex organization and control—it is dedicated for 64-bit data,
contains three subunits, operating in four internal states with
low flexibility and scalability. The achieved processing speed
is 245 000 MB/s at clock frequency 100 MHz. Compared to it,
our proposals have the following advantages.

 Faster processing—if we assume the same operating
speed (100 MHz) for both ASIC and ALU schemes, our
64-bit implementations are three times faster (781 250
versus 245 000 MB/s).

e Flexibility and scalability—our approaches allow high
levels of scalability and flexibility.

e Simple hardware—with their trivial control scheme, our
implementations are simpler than the design in [15]. Our
hardware overhead is just a few multiplexers versus the
three subunits and complex interconnect.

A hardware acceleration of the padding, which appears to be
faster, is discussed in [16]. In such a proposal, the padding al-
gorithm is modified to support specific instruction set exten-
sions as the horizontal and vertical padding processes are di-
vided into two phases each. These two phases consequently scan
the lines/columns into two opposite directions and perform the
padding operations. In the proposed solution, there is a hard-
wired dedicated padding unit with high control overhead, sup-
porting eight new instructions. Its estimated processing speed
at 100-MHz clock frequency is 250 000 MB/s for 32-bit data
width. Our proposal differentiates with the schemes described
there in the following.

* Higher processing speeds. In [16], the processing speed
is reported only for a 32-bit unit. Although the design is
claimed to be scalable and implementable for larger data
types, for 64- and 128-bit units data is not reported. For
32-bit data our units are at worst over 20% faster (312 500
versus 250 000 MB/s). According to the scheme proposed
in [16], the processing speed of the unit increases (at most)
linearly with the operand width. Our approaches allow an
exponential speed up when the data width increases due to
the better data processing scheme. For 64-bit data and the
same clock frequency our units can be estimated to be over
50% faster, while for 128-bit data, the estimated speed up
is over a factor of two.

* Simpler control. To perform the padding algorithm, our
units require only one additional instruction, while in [16]
eight new instructions are introduced. As a rule in com-
puter engineering, a higher number of additional instruc-
tions imposes more severe architectural modifications and
more complicated data paths and control circuitry in the
implementation. It is always preferable to limit the op-
codes added into an architecture. Our proposal is clearly
better with only one (the minimum) instruction in addi-
tion.

Both [15] and [16] present hardware estimations for 0.35 pym
CMOS technology and do not report any technology indepen-
dent hardware estimations (e.g., number of logical gates). Con-
sequently, we can not make an exact and independent compar-
ison between the hardware size complexities of these units. Fi-
nally, in the present paper we use the standard repetitive padding
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algorithm (differentiates from [13] and [14]) as we scan each
line and column of a macroblock bidirectionally in parallel (dif-
ferentiates from [16] where the padding algorithm is modified),
thus saving a number of processing cycles. Our two approaches
for the hardware acceleration of the algorithm are scalable (dif-
ferentiates from [15]) and differentiate from all of the above
mentioned references with the reconfigurable implementation
and the general-purpose ALU modification.

VI. CONCLUSION

Two hardware approaches to realize the MPEG-4 repetitive
padding algorithm in real-time were discussed in this paper.
First, a design of a simple dedicated systolic structure was
proposed. Its reconfigurable hardware costs and performance
had been evaluated for two FPGA technologies—Altera and
Xilinx. The simulation results indicate that the proposed
padding unit can easily meet the real-time requirements of the
Core and Main MPEG-4 profiles at trivial hardware costs. The
second approach, proposed in this paper, described a scheme
for general purpose ALU augmentation, which accelerates
the MPEG-4 padding algorithm by orders of magnitude. We
proposed a pipelined implementation preserving the original
functionality of the target ALU. At a trivial hardware cost of
only a few hundred elementary 2 X 2 AND-OR logic gates, we
could easily achieve a real-time performance at the most-de-
manding MPEG-4 profile levels.
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