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Abstract— This paper proposes architectural solutions
that deal with two of the most crucial performance require-
ments imposed by the MPEG-4 standard, namely high
data throughput and high computational power. To ob-
tain higher data throughput, we define a new data stor-
age facility with a specific data organization and a new
addressing mode called two-dimensional block addressing.
To achieve higher computational power, we propose an
instruction set extension, benefitting from this address-
ing mode. This is illustrated by the implementation of a
new instruction called ”ACcepted Quality” (ACQ). This
instruction supports the identically named ACQ function,
which is an essential part of the shape encoding process in
MPEG-4. We have implemented the ACQ function on a
dedicated systolic structure and its FPGA realization sug-
gests 62 ns operating latency. Utilizing this result, we have
made performance evaluations with a benchmark software
(MPEG-4 shape encoder) by a cycle-accurate simulator.
The simulation results indicate that the performance is in-
creased by up to 10%.

Keywords—Multimedia Architecture, Data Bandwidth,
Two-Dimensional Block Addressing, MPEG-4, Visual Ob-
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I. INTRODUCTION

The fast development pace of new visual data com-
pression standards (e.g., MPEG-4) is dramatically in-
creasing the system performance requirements, which
already exceed the capabilities of current general-
purpose architectures’. In addition, the increasingly
popular media applications are becoming one of the
most demanding types of workloads. Therefore, there
is a growing need for new architectures or archi-
tectural extensions, optimized for multimedia algo-
rithms. Such architectures must enable implementa-
tions that would easily meet the performance require-

'In this paper by architecture of any computer system we
mean the conceptual structure and functional behavior as seen
by its immediate user [2].
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ments imposed by MPEG-4 [1][10]. The most crucial
of these requirements are high computational power
and high data throughput. This paper proposes a new
data storage facility for MPEG-4 systems. This facil-
ity is linked to multimedia processing units through
a high bandwidth interconnection and we propose a
new addressing approach to allow a faster data ac-
cess. The addressing is defined as an architectural
issue and utilizes visual data processing algorithms
based on block division of data. We define an ad-
dressing function over a two-dimensional visual data
plane and refer to the corresponding addressing mode
as a two-dimensional block addressing. To increase the
computational power of an MPEG-4 architecture, we
propose an instruction that utilizes the advantages of
the new addressing approach. The proposed instruc-
tion supports the ACcepted Quality (ACQ) function,
which is defined in [1]. The ACQ function is an essen-
tial part of the shape encoding process in MPEG-4
and shows whether the encoding gives an accepted
quality results according some specified lossy coding
conditions. We have implemented the ACQ function
as a scalable systolic array structure and have mapped
it onto an Altera FPGA.

The remainder of the paper is organized as fol-
lows. Section II gives a short introduction into con-
tent representation and shape processing as adopted
in MPEG-4. Some background information about vi-
sual data compression architectures and about dedi-
cated memory organizations is also discussed. Section
III gives a formal definition of the new addressing
mode and discusses its possible utilization. Section
IV proposes an implementation of the ACQ function,
that utilizes the newly defined addressing. In Sec-
tion V, an evaluation of the implemented structure
is presented and its results are reported. Finally, the
conclusions of this paper with some future research
directions are discussed in Section VI.



II. BACKGROUND

An important part of the multimedia applications
domain is formed by the visual data compression stan-
dards (e.g., MPEG). All these standards aim to pre-
serve best possible visual quality at a given bitrate
range. MPEG-1 and MPEG-2 are dedicated for data
rates in the order of 1.5 Mbit/s and 10 Mbit /s, respec-
tively. The latest complete visual coding standard is
MPEG-4. Next to supporting data transmission at
very low bit rates (64 kbit/s) it is the first content-
based visual data compression standard. While in
MPEG-1,2 a whole frame of a video sequence is pro-
cessed, in MPEG-4 a frame is first decomposed with
respect to its content and each decomposed part is
then processed independently. In all multimedia video
and still-picture applications, data is physically dis-
played as a two-dimensional array of picture elements
(pels). Every MPEG picture is divided into basic
building blocks called macroblocks. Each macroblock
consists of one 16x16 array of luminance (grayscale)
pels and two 8x8 arrays of chrominance (color) pels,
which represent the full-color of the corresponding
16x16 picture area.

A. Content representation in MPEG-4

For content-based coding, MPEG-4 uses the con-
cept of a video object plane (VOP). A VOP is an
arbitrarily shaped region of a frame, which usually
corresponds to a semantic object in the visual scene.
A sequence of VOPs in the time domain is referred to
as a Video Object (VO). This means that we can view
a VOP as a "frame” of a VO. Each VOP has its shape
- a feature that does not exist in MPEG1/2 stan-
dards and was proposed for the first time in MPEG-4
[1][10]. A possible representation of the shape infor-
mation is the binary format. This format represents
the shape as a bitmap, referred to as binary alpha
plane. Each pel in this plane takes one of two pos-
sible values, which indicate whether a pel belongs to
the object or not. Each 16x16 pel macro block has
a corresponding 16x16 bitmap block referred to as
binary alpha block (BAB). Previous research efforts
show that the most computationally expensive algo-
rithms in MPEG-4 [10] are motion estimation and
shape encoding [5][6][9]. These two parts of the stan-
dard constitute more than 95% of the computations
in the MPEG-4 video encoder and represent the most
critical performance bottlenecks.

The MPEG-4 shape encoder is responsible for three
basic procedures preceding the actual encoding pro-

cess, which are: mode decision, binary motion estima-
tion and compensation and rate control. In all these
procedures the ACQ function is intensively used.

Mode decision. A mode decision procedure is per-
formed over each BAB [1] and there exist seven modes
to code the shape information of each macroblock.

Motion estimation and compensation for shape.
This new functionality is adopted by MPEG-4 and is
the most demanding part of shape encoding in terms
of performance. The motion estimation and compen-
sation for shape is similar to the traditional motion
estimation and compensation for video frames, but it
is now performed over the binary alpha map.

Rate control is obtained through block level size
conversion of all BABs. The conversion ratio (CR)
is 1/4, 1/2 or 1 the original size. Each 16x16 BAB
is down-sampled to (16xCR)x(16xCR) and then up-
sampled back to 16x16 by means of filters described
in [1].

B. Visual data processing architectures

In literature [5][6][7][8][9], it is agreed that systolic
array processors, SIMD and VLIW processors match
many of the new multimedia algorithms. In [7] it is ad-
vocated that the combination of Simultaneous Multi-
threaded Processors and streaming vector u-SIMD in-
structions can achieve the performance required for fu-
ture media workloads. The same paper proposes two
important architectural concepts as appropriated for
the new workload demands - Chip Multi-Processors
and Simultaneous Multithreaded Processors.

The support of many functionalities found in multi-
media standards (e.g., MPEG-4) is optional. In such
cases, it is expensive and not effective to make a hard-
wired implementation that supports all functionali-
ties in the standards. To keep the implementation of
such a complex multimedia architecture at a reason-
able cost-performance ratio, a reconfigurable approach
can be used. In [16] a new processor architecture is
proposed that supports reconfiguration at architec-
tural level and achieves high flexibility in tuning a
system for a specific application. The reconfiguration
and execution processes are controlled by only three
new instructions, allowing instructions, entire pieces
of code, or their combination to execute in a reconfig-
urable manner.

C. Visual data and memory

In digital video applications, visual data is scanned
and transformed into a sequence of color pels. The full
color (luminance+chrominance) values of these pels



are usually stored into linearly addressable memory
at subsequent locations. This linear data alignment,
however, does not appear to be optimal with respect
to visual data processing in MPEG.

Most of the algorithms in the MPEG standards are
data intensive and have two important features: data
locality and data reusability. These two features mean
that intensive data transfers from only a few memory
locations are constantly required. In such memory
locations (say search area for motion estimation algo-
rithms) data are not processed in the order they are
aligned in the linearly byte or word addressable mem-
ory. Furthermore, in order to access the right piece of
data (Figure 1) in such memories, some time expen-
sive address manipulations and algorithm-dependent
data reordering are required. This fact advocates for
the need of a different data access approach aimed at
achieving a considerable data throughput speed-up.
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Fig. 1. Block Data Overlap

In [12], Park develops the ideas from [4][11][13][15]
for two-dimensional data alignment into multiple
memory modules. He proposes a faster buffer mem-
ory system by separating the address calculation from
the address routing and solving the complex control
problem of the latter. This concept for data alloca-
tion has been used in the design of graphical display
systems where it is referred to as a block subarray ac-
cess. However, it is not defined as an architectural
issue and is not implemented within visual data com-
pression standards.

A flexible architecture adapted to conventional
motion-estimation algorithms is proposed in [8]. Some
ideas for a specific data-memory organization and ac-
cess are discussed and a trial-and-error data reorder-
ing is proposed for algorithm independent and optimal
performance solutions.

An extensive exploration in memory management
and organization for MPEG-4 encoders is reported
by the researchers from Katholieke University Leuven
and Dresden University of Technology [3][14]. How-

ever their focus was in the field of low-power consump-
tion. These authors propose combining background
and foreground memory in a low-power optimized hi-
erarchy and an approach to design a processor array
within the context of the derived memory organiza-
tion. The power consumption is minimized by dra-
matically decreasing the number of background mem-
ory accesses without sacrificing speed.

III. THE TwoO-DIMENSIONAL ADDRESSING MODE

A video frame has a two-dimensional structure,
but traditionally the information it contains has been
stored in a linearly addressable memory. Since the
basic unit being processed in MPEG-4 is the block
of pels, we can assume a new storage facility with a
two-dimensional logical organization, where the ba-
sic addressable units are blocks. This allows the im-
plementation of a memory system with a higher data
throughput. This resulted in the definition of the two-
dimensional block addressing (2DBA).

Definition 1 We define the Two-Dimensional Block
Addressing as the following address function:

B/ -
Ak,l(ZaJ) =
Dij Dij+1 Pij+k—1
PDivi—-15 Pit+i-1,j+1 Piti-1,+k-1

,where k,l are block dimensions;

pi,j represents pel with coordinates i,j in the address-
able area;

0<i,k<MO0<jl<N;

M, N are the dimensions of the 2D addressable
area.

If k=I, the address function can be denoted as
AB(i,j), so AB(i,j) denotes the 2D address i,j of
a 16x16 block.

The definition includes three architectural issues:

+ Two-dimensional data storage displayed to the im-
mediate user (programmer) of the architecture.

« Block data type as a basic addressable data unit.

o Addressing function to access blocks of visual data.
The definition states that the 2D address of a block is
the same as the 2D-coordinates of its upper-left-most
pel in the addressable area. The graphical represen-
tation of the 2DBA is depicted in Figure 2.

Figure 3 depicts an abstract design model of the
proposed addressing mode. The interconnection net-
work is responsible for routing the right data block
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Fig. 2. 2D Block Addressing

from the memory array to the processing units.
We can also refer to the above proposed address-
ing scheme as a two-dimensional cutting or two-
dimensional barrel shifting, performed by the access
network block in Figure 3.
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Fig. 3. An Abstract Design Model

It is important to note that we define the 2D ad-
dressing at the architectural level so it is up to the
designer to propose its implementation. The mem-
ory can be implemented as an on-chip buffer with
dedicated organization. Read and write operations
are not symmetrical in MPEG-4 where random block
read is the most frequent memory access type while
write operations are relatively seldom. Simpler imple-
mentations and higher speed-ups are achievable by ex-
ploiting the asymmetry between data read and write
memory accesses.

IV. ADDRESSING UTILIZATION

Besides the data throughput, the computational
power of a processor can also be improved by defin-
ing instructions that utilize the proposed (block) data
type and addressing mode. These instructions should
support program kernels or functions that are consis-
tent with three basic preconditions for the processed
data: block-organized visual data, data locality and
data reusability. A good candidate to utilize the pro-
posed addressing mode that meets these three pre-
conditions is the binary shape encoder in MPEG-4.

Among the most important shape manipulations is
the verification of the accepted quality of a block en-
coding - the accepted quality (ACQ) function.

A. The Accepted Quality function

In MPEG-4 a decision about a suitable coding mode
is made for each BAB in the binary alpha map. An
essential part of this process is the necessity to ascer-
tain whether this BAB has an accepted quality under
some specified lossy coding conditions. Each BAB is
divided into 16 4x4 pixel blocks and this data struc-
ture is evaluated with the criterion for an accepted
quality. A dedicated function called ACQ is defined
in [1]:

Definition 2 Given the current original binary alpha
block i.e. BAB and some approrimation of it i.e.
BAB’, it is possible to define a function

AC’Q(BABI) = MIN (acqo, acqi, ..., acqis), (1)

where

0
acq; = { 1

SAD_PB;(BAB,BAR') is defined as the sum of ab-
solute differences for PB;, where an opaque pel has
value of 255 and a transparent pel has value of 0. The

parameter alpha_th may have one of the following val-
ues {0,16,32,64,...,256}.

if SAD_PB; > 16 % alpha_th
otherwise.

(2)

In this definition BAB' is the encoded BAB and
alpha_th formally specifies the lossy coding conditions.
The higher the alpha_th value is, the less quality of the
encoding is acceptable. If alpha_th=0, then encoding
will be lossless.

We can represent SAD_PB; as follows:

15
SAD_PB; = 255 Z |Pi6+j — P64 (3)
=0

!/ . -
where P;164; and P, 16, are the binarized values of

the =t pels from PB; and PB; respectively and a
value of 0 represents a transparent pel while a value
of 1 - an opaque one. According to these assumptions
we can substitute the absolute difference in (3) with
a zor operation:

15
SAD_PB; =255 (P16+j ® Pii6yj) =
=0



= 255(PB; & PB;) = 256(PB; ® PB;) — (PB; ® PB;)
(4)
where PB;® P B, denotes the bit sum of the bit-by-bit
zor over the pel blocks.
According to Definition 2 and Equation (4):

acq; = (SAD_PB; < alpha_th x 16) =

— [256(PB; @ PB;) < alpha_th x 16 + (PB; & PB})]
(5)

and
ACQ(BAB’) = AN Dqg(acqo, acq, -..,acqi5)  (6)

According to Definition 2, alphath * 16 =
alpha_ths * 256, where alpha_ths denotes the five
MSD of alpha_th. On the other hand the result of
(PB; @ PB;) is a five-digit number and we can re-
duce the acg; computation to the comparison of two
5-digit numbers as follows: acg; = [(PB; ® PB;) <

alphmﬂ%.%] and since % ~ 1

acg; ~ [(PB; @ PB;) < alpha_ths) (7)

The implementation of Equation (7) is depicted on
Figure 4. We can assume the discussed structure as
a basic processing element (PE). To maintain all 16
pixel blocks of the BAB in parallel (taking into ac-
count Equation (6)) we can build the systolic proces-
sor shown on Figure 5.
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Fig. 4. Accepted quality single pel-block processing element

B. Scalability and Data Bandwidth

The proposed circuit would take two cycles for ex-
ecution in a real implementation?, and if pipelined
it can produce a valid result every cycle, given the
data memory bandwidth requirements are met. On
the other hand, the structure is scalable and can meet
any memory bandwidth restrictions. For its efficiency,
however, a multiple of 16 bits per cycle bandwidth is
recommended, ranging between 16 and 256 bits/cycle
for a single BAB. Figures 4 and 5 show the two ex-
treme cases - a pel block processor and a BAB pro-
cessor. These two processors differ in the granularity
and the throughput of the processed data. If we use
the 2D addressing mode over an on-chip memory ar-
ray for the ACQ engine we can randomly fetch the
required data amount, thus supplying the optimum
data throughput.

BAB BAB’

——»-{ACQLACQL..... ACQ

alpha_th L Jr)
-
ACQ(BAB’)

Fig. 5. The ACcepted Quality processing structure

V. EVALUATION

To evaluate the proposed structure, a single pro-
cessing element and an array of processing elements
have been modeled in VHDL and RTL simulations
have been run. The VHDL models have been synthe-
sized for Altera FPGA. The reference software for the
evaluation of the structure was Altera Max+Plus II.

2A cycle here is considered to be comparable to the cycle of a
high speed, 2-cycle multiplier.



The simulation results indicate that each processing
element performs the acg; function within 60 ns. The
evaluation of the MIN function takes about 2 ns.

TABLE 1
Processing time and required memory bandwidth according
to the number of processing elements (for Altera FPGA)

Number of | Processing | BAB/s Memory
PE time in ns bandwidth
1 992 1 008 065 16 bit
496 2016 129 32 bit
8 124 8 064 516 128 bit
16 62 16 129 032 256 bit

Table I suggests the processing latency and memory
bandwidth, required for different number of process-
ing elements in an Altera FPGA. The reported data
guarantees that the proposed engine can meet the real
time constrains of a dedicated MPEG-4 shape proces-
sor. To evaluate the structure as an instruction im-
plementation, however, we have to use the reported
data into a cycle-accurate simulator of a microarchi-
tecture. We chose the the MPEG-4 shape-encoding
algorithm and the SimpleScalar toolset to simulate
the ACQ instruction as an instruction set extension
of a superscalar MIPS architecture. The simulation
results indicated about 10% faster performance for a
machine organization adopted from [16].

VI. CONCLUSIONS AND FUTURE WORK

In this paper we introduced a new addressing mode,
referred to as two-dimensional addressing. An instruc-
tion, utilizing the new memory access was proposed
and its scalable implementation was investigated. We
achieved a considerable processing speed-up, due to:
a) the two-dimensional addressing is more suitable
and faster than conventional addressing schemes when
applied over block organized visual data; and b) we
defined and implemented a new function that plays a
key role in the investigated class of algorithms. Fur-
thermore, the design of the proposed function is highly
parallel and at a very low hardware cost. The sum
of absolute differences per pixel block basis has been
substituted by a pixel block-wise zor operation and a
parallel counter structure. The thresholding has been
performed by a simple, 5-bit comparator.

A combination of the new addressing mode and a
set of dedicated instructions utilizing it, appear to be
very beneficial for a range of multimedia algorithms.
This fact addresses two directions for future research:

Addressing implementation. A fast and cost-
effective implementation of the two-dimensional ad-
dressing will make the benefits of this approach
stronger. Its promising properties may position it as a
basic addressing mode in future MPEG architectures.

New instructions. Defining a complete set of dedi-
cated instructions with respect to the two-dimensional
addressing, forms another research direction for an
overall multimedia processing speed-up.
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