An Implementation of the MPEG-4 ACQ Function

Georgi Kuzmanov,

Stamatis Vassiliadis,

Jos van Eijndhoven*

Delft University of Technology - Electrical Engineering Dept.,
P.O. Box 5031, 2600 GA Delft,The Netherlands
*PHILIPS Research - Dept. of Information and Software Technology,
Eindhoven,The Netherlands

Phone:+31-(0)15-27-86249

Abstract— An important new feature in MPEG-4 is
the ACcepted Quality Function (ACQ), which determines
whether the encoding of the shape of an object gives an
accepted quality according to some specified lossy coding
conditions. In this paper, we propose a hardware imple-
mentation of the ACQ function as a systolic structure of
processing elements. The structure is scalable and can be
implemented according to different memory bandwidth re-
strictions. A single processing element and an array of
processing elements have been modeled in VHDL and RTL
simulations have been run. The VHDL models have been
synthesized for Altera FPGA and the results indicate that
the proposed structure can easily meet the real-time re-
quirements with its operating latency of 62 ns. The struc-
ture can support the ACQ function as an instruction in an
ISA extension of a general purpose processor. The ACQ
function can be implemented either as a reconfigurable or
as a hardwired unit in a dedicated MPEG-4 processor.

Keywords— MPEG-4, ACQ, Visual Object, Systolic
Structure, ISA extension

I. INTRODUCTION

MPEG-4 aims at providing description of tools and
algorithms for efficient storage, transmission and ma-
nipulation of video data in various multimedia envi-
ronments [8], [9]. The approach, taken by the Motion
Pictures Experts Group (MPEG) in this standard, re-
lies on the content-based coding, which, combined with
various new functionalities, makes MPEG-4 radically
different from its predecessors. For content-based cod-
ing, this new standard uses the concept of a video ob-
ject plane (VOP). VOP is an arbitrarily shaped region
of a frame, which usually corresponds to a semantic
object in the visual scene. A sequence of VOPs in time
domain is referred to as a Video Object (VO). This
means that we can view a VOP as a ”frame” of a VO.
Each of the video objects is transmitted by a separate
bitstream of arbitrary-shaped VOPs. Once the VOPs,
required for a visual scene composition are available in
the receiver, the corresponding frame is reconstructed.

E-mail:G.KuzmanovQET.TUDelft.NL

To distinguish an object from the background and to
identify the borders of a VOP, MPEG-4 defines shape
of an object. Shape information is provided in binary
or grayscale format. The binary format represents the
object shape as a pixel map, which has the same size
as the bounding rectangular box of the VOP. Each
pixel from this bitmap takes one of two possible val-
ues, which indicate whether a pixel belongs to the
object or not. The binary shape representation of a
VOP is referred to as binary alpha plane. This plane is
partitioned into 16x16 binary alpha blocks (BAB) and
each binary alpha block is associated with the mac-
roblock, which covers the same picture area. In the
grayscale shape format, each pixel can take a range
of values, which indicate its transparency. The trans-
parency value can be used for different shape effects
(e.g.,blending of two images).

MPEG-4 imposes new, higher computational re-
quirements that already exceed the capabilities of
current general-purpose architectures!. One possible
approach to improve the computational power of a
general-purpose architecture is to utilize new, special-
ized instructions as instruction set extensions [1], [12],
[13]. In this paper, we have implemented the new
instruction ” ACcepted Quality” (ACQ), which sup-
ports the identically named function in MPEG-4. The
ACQ accelerator has been implemented as a scalable
systolic structure, described in VHDL. The VHDL
source has been synthesized for an FPGA chip, and
netlist simulations have been run. The data, reported
from the FPGA netlist simulator have been used into
a cycle-accurate simulator of an out-of-order super-
scalar microarchitecture. Assuming Altera FPGAs
and the SimpleScalar toolset for microarchitectural
simulations, we reduce the calculation of the ACQ

'In this paper, by architecture of any computer system, we
mean the conceptual structure and functional behavior as seen
by its immediate user [2].

function to 62ns, allowing performance gains of the
shape encoder by up to 10%.

The remainder of this paper is organized as follows.
In Section II, the ACQ function is described and its
implementation is proposed. The same section dis-
cusses the scalability of this implementation and the
data bandwidth it requires. Section ITI contains an
evaluation of the proposed structure and reports the
results. Finally, the conclusions of this paper are in-
cluded in Section IV.

II. THE ACCEPTED QUALITY FUNCTION

Previous research in [3][4][6][10] indicate that after
motion estimation, the next computationally most de-
manding algorithm in MPEG-4 is the shape encoding.
An essential part of the shape encoding process in
MPEG-4 is the necessity to ascertain whether the en-
coded BAB has an accepted visual quality under some
specified lossy coding conditions. To achieve this, each
BAB is divided into 16 4x4 pixel blocks (PB) and this
data structure is used by the criterion for an accepted
quality. A dedicated function called accepted quality
function (ACQ) is defined in [8]:

Definition 1 Given the current original binary alpha
block i.e. BAB and some approrimation of it i.e.
BAB', it is possible to define a function

ACQ(BAB’) = MIN (acqy,acq, ..., acq15), (1)

where

0

and SAD_PB;(BAB,BAB') is defined as the sum
of absolute differences for PB;, where an opaque
pizel has value of 255 and a transparent pizel has

value of 0.The parameter alpha_th has wvalues of
{0,16,32,64,...,256%}.

if SAD_PB; > 16 * alpha_th
otherwise.

(2)

The ACQ function determines whether the encod-
ing (BAB') of a certain BAB gives an accepted qual-
ity result according some specified lossy coding con-
ditions. These conditions are formally included in the
alpha threshold parameter. Figure 1 depicts the in-
fluence of the alpha_th parameter on the appearance
of an encoded VOP. The higher the alpha_th value is,
the lower the acceptable quality of the encoding is. If
alpha_th=0, then encoding will be lossless (with the
highest visual quality).

The ACQ function is intensively used in three basic
procedures of the MPEG-4 encoding process, namely:

Fig. 1. Alpha threshold influence on the VOP visual qual-
ity: left - alpha_th=0; right - alpha_th=256

mode decision, binary motion estimation and compen-
sation and rate control. In all these procedures the
ACQ function is intensively used.

Mode decision. A mode decision procedure is per-
formed over each BAB and there exist seven modes to
code the shape information of each macroblock [8].

Motion estimation and compensation for shape.
This is the most demanding part of shape encod-
ing in terms of performance. The motion estimation
and compensation for shape is similar to the tradi-
tional motion estimation and compensation for full-
color video frames, but in MPEG-4 it is performed
over the binary alpha map.

Rate control is obtained through block level size
conversion of all BABs. The conversion ratio (CR)
is 1/4, 1/2 or 1 the original size. Each 16x16 BAB
is down-sampled to (16xCR)x(16xCR) and then up-
sampled back to 16x16 by means of filters [8].

A. Implementation

To implement the ACQ function we make some
mathematical manipulations first. Let us represent
SAD_PB; as follows:

15
SAD_PB; =255 |Pi16rj — Prigyl (3)

§=0
where P; 16,; and P, s +; are the binarized values of
the j 7% pixels from PB; and PB; respectively and a
value of 0 represents a transparent pizel while a value
of 1 - an opaque one. According to these assumptions,

we can substitute the absolute difference in (3) with
a zor operation:

15
SAD_PB; =255 (Pii64j © Piigyj) =
=0

= 255(PB; ® PB;) = 256(PB; ® PB;) — (PB; ® PB;)

(4)
where PB;® PB, denotes the bit sum of the bit-by-bit
zor over the pixel blocks.

According to Definition 1 and Equation (4):
acq; = (SAD_PB; < alpha_th * 16) =

= [256(PB; @ PB;) < alpha_th = 16 + (PB; ® PB})]
(5)

and
ACQ(BAB’) = AN Dq4(acqo, acqy, -..,acqi5) (6)

According to Definition 1, alphath * 16 =
alpha_ths * 256, where alpha_ths denotes the five
MSD of alpha_th. On the other hand the result of
(PB; @ PB,) is a five-digit number and we can re-
duce the acgq; computation to the comparison of two
5-digit numbers as follows: acg; = [(PB; @ PB;) <

256

alpha_ths.228] and since 228 ~ 1:

acg; ~ [(PB; & PB;) < alpha_ths) (7)

The implementation of Equation (7) is depicted on
Figure 2. We can assume the discussed structure as
a basic processing element (PE) and (taking into ac-
count Equation (6)) we can build the systolic proces-
sor shown on Figure 3.

16-5
Counter

5

|

ACQi T
dpha th[g:a]

acqi

Fig. 2. Accepted quality single pixel-block processing ele-
ment

B. Scalability and Data Bandwidth

The proposed circuit would take two cycles for ex-
ecution in a real implementation?, and if pipelined it

2A cycle here is considered to be comparable to the cycle of a
high speed, 2-cycle multiplier.

can produce a valid result every cycle given the data
throughput requirements are met. On the other hand,
the structure is scalable and can meet any memory
bandwidth restrictions. For its efficiency, however,
a multiple of 16 bits per cycle bandwidth is recom-
mended, ranging between 16 and 256 bits/cyc for a
single BAB. Figures 2 and 3 show the two extreme
cases - a pixel block processor and a BAB processor.
These two processors differ in the granularity and the
throughput of the processed data. If we use an on-
chip memory buffer with a suitable organization for
the ACQ engine, we will be able to achieve higher
data throughput.

BAB BAB’

C15

——»ACQL A(le_ _____ - AfSQ

ACQ(BAB’)

Fig. 3. The ACcepted Quality processing structure

III. EVALUATION

To evaluate the proposed structure of the ACQ
function accelerator, a single processing element and
an array of processing elements have been mod-
eled in VHDL and RTL simulations have been run.
The VHDL models have been synthesized for Altera
FPGA. The reference software for the evaluation of
the structure is Altera Max+Plus II. The simulation
results indicate that each processing element performs
the acg; function within 60 ns. The evaluation of
the MIN function takes about 2 ns. Table I suggests
the processing latency and memory bandwidth, re-

TABLE I
PROCESSING TIME AND REQUIRED DATA BANDWIDTH
ACCORDING TO THE NUMBER OF PROCESSING ELEMENTS
(FOR ALTERA FPGA)

Number of | Processing | BAB/s Data
PE time in ns bandwidth

1 992 1 008 065 16 bit

496 2 016 129 32 bit

8 124 8 064 516 128 bit

16 62 16 129 032 256 bit

quired for different number of processing elements in
an Altera FPGA. Besides the operating latency, we
use another measurement for the speed of the engine
in terms of processed data units per time unit. In
the proposed engine, the basic data units are BABs
and we achieve a speed of up to 16 129 032 BAB/s.
Since there is a macroblock corresponding to any BAB
and the macroblock processing speed is defined in the
MPEG-4 profiles [7], we can use our results to esti-
mate the real-time operating capabilities of the cir-
cuit. For the core and main MPEG-4 profiles, the
required real-time rates to process 16 and 32 video
objects are 23 860 MB/s and 97 200 MB/s (mac-
roblocks per second) respectively. These numbers are
well below our simulation results and, assuming that a
macroblock manipulation involves a BAB processing
as well, it is evident that the proposed ACQ engine
can easily meet the real-time constrains of a dedicated
MPEG-4 shape processor. To evaluate the structure
as an instruction implementation, however, we have to
use the reported data into a cycle-accurate simulator
of a microarchitecture. As such a simulator, we have
used the sim-outorder from the SimpleScalar Toolset
(version 2.0) [5] to simulate the ACQ instruction as
an instruction set extension of a superscalar MIPS ar-
chitecture. The simulated machine organization has
been adopted from [11] and the simulation results in-
dicate up-to 10% faster performance, while running
the MPEG-4 shape-encoding algorithm.

IV. CONCLUSIONS

In this paper we proposed an implementation sup-
porting the MPEG-4 ACQ function as an instruction
set extension of a general-purpose processor. The de-
signed scalable structure has been modeled in VHDL
and synthesized for an Altera FPGA. Simulation re-
sults indicate capabilities of processing up to 16 129
032 BAB/s and performance gains of up to 10%. An

implementation of the ACQ unit either as a hard-
wired, or as a reconfigurable accelerator of a general
purpose architecture would benefit the real-time im-
plementation of an MPEG-4 shape encoder.

V. ACKNOWLEDGEMENTS

This research is supported by PROGRESS, the em-
bedded systems research program of the Dutch or-
ganization for Scientific Research NWO, the Dutch
Ministry of Economic Affairs, the Technology Founda-
tion STW (project AES.5021) and PHILIPS Research
Laboratories, Eindhoven, The Netherlands.

REFERENCES

[1] M. Berekovic, H.-J. Stolberg, M. B.Kulaczewski, P. Pirsh,
H. Moler, H. Runge, J. Kneip, and B. Stabernack. Instruc-
tion set extensions for MPEG-4 video. Journal of VLSI
Signal Processing, 23(1):27-49, October 1999.

[2] G. A. Blaauw and F. P. Brooks. Computer Architecture:
Concepts and Evaluation. Addison-Wesley, 1997.

[3] H.-C. Chang, L.-G. Chen, M.Y. Hsu, and Y.-C.
Chang. Performance analysis and architecture evaluation
of MPEG-4 video codec system. In IEEE International
Symposium on Circuits and Systems, volume II, pages 449—
452, Geneva,Switzerland, 28-31 May 2000.

[4] H.-C. Chang, Y.-C. Wang, M.-Y. Hsu, and L.-G. Chen.
Efficient algorithms and architectures for MPEG-4 object-
based video coding. In IEEE Workshop on Signal Process-
ing Systems, pages 13—22, 11-13 Oct 2000.

[5] D.C.Burger and T.M.Austin. The simpleScalar Tool Set,
Version 2.0. Technical Report CS-TR-1997-1342. Univer-
sity of Wisconsin-Madison, 1997.

[6] H.-J.Stolberg, M.Berekovic, P.Pirsch, H.Runge, H. Moller,
and J.Kneip. The M-PIRE MPEG-4 codec DSP and
its macroblock engine. In IEEE International Sympo-
sium on Circuits and Systems, volume II, pages 192-195,
Geneva,Switzerland, 28-31 May 2000.

[7] ISO/IEC JTC11/SC29/WG11 W2502. ISO/IEC 14496-2.
Final Draft International Standard. Part2: Visual, Oct.
1998.

[8] ISO/IEC JTC1/SC29/WG11 N3312. MPEG-4 video veri-
fication model version 16.0.

[9] ISO/IEC JTC1/SC29/WG11 N4030. MPEG-4 overview,
March. 2001.

[10] S. Vassiliadis, G. Kuzmanov, and S. Wong. MPEG-4 and
the New Multimedia Architectural Challenges. In 15th
International Conference SAER’2001, St.Konstantin, Bul-
garia, 21-23 September 2001.

[11] S. Vassiliadis, S. Wong, and S. Cotofana. The MOLEN
rm-coded processor. In 11th International Conference on
Field Programmable Logic and Applications (FPL), 2001.

[12] S. Wong, S. Cotofana, and S. Vassiliadis. Multimedia En-
hanced General-Purpose Processors. In International Con-
ference on Multimedia and Expo, New York City, NY, USA,
2000.

[13] S. Wong, S. Cotofana, and S. Vassiliadis. Coarse Re-
configurable Multimedia Unit Extension. In 9th Euromsi-
cro Workshop on Parallel and Distributed Processing PDP
2001, pages 235-242, Mondova, Italy, 2001.

